Network Working Group C. Newman
Request for Comments: 2244 Innosoft
Category: Standards Track J. G. Myers
Netscape
November 1997

ACAP -- Application Configuration Access Protocol

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society 1997. All Rights Reserved.
Abstract

The Application Configuration Access Protocol (ACAP) is designed to
support remote storage and access of program option, configuration
and preference information. The data store model is designed to
allow a client relatively simple access to interesting data, to allow
new information to be easily added without server re-configuration,
and to promote the use of both standardized data and custom or
proprietary data. Key features include "inheritance" which can be
used to manage default values for configuration settings and access
control lists which allow interesting personal information to be

shared and group information to be restricted.

Newman & Myers Standards Track [Page i]

RFC 2244 ACAP November 1997

Table of Contents

Status of thiS MEMOcovvveeiiiiiiiiieee e i

Copyright NOICEeeviiiiiiiie e i

ADSIIACT ... i

ACAP Protocol Specificationcccccoovviiiiiiiiieennnnnn. 1

1. INtroducCtionceeveiiiiiiieee e 1

1.1. Conventions Used in this Documentcccc.... 1
1.2. ACAP Data Modeloovveeeiriiiiiieiieieiieneea, 1

1.3. ACAP Design Goalscccceevvviieeeenniiieeeee, 1

1.4, Validationc.cooeeiiiieiiiiiceeeeeeeee, 2

1.5. Definitionsccoooeeeeiiiiiiiiiieeeeee e, 2

1.6. ACAP Command OVEIVIEWccoeeevevvvreieeeereeiinnnnn. 4

2. Protocol Frameworkccoeeveveviivviieiieeiienn, 4

2.1, LINKLEVEl c.uviieeeeiieeeeee e 4

2.2. Commands and RESPONSEScc.eeverrivreereininneens 4
2.2.1. Client Protocol Sender and Server Protocol Receiver 4
2.2.2. Server Protocol Sender and Client Protocol Receiver 5
2.3, Server Statescoccvviiiiiiiieiiee s 6

2.3.1. Non-Authenticated Stateccccoeeveevrivrvieeeennns 6

2.3.2. Authenticated Statec.ceeeveviveviereiiieeeiinnens 6

2.3.3. Logout Stateccccevevveiiiiiiiieee e 6

2.4. Operational Considerationscccccoevcuvvnnnen. 7

2.4.1. Untagged Status Updatesccccuvvreieeeeneeennn. 7
2.4.2. Response when No Command in Progresscc....... 7
2.4.3. Auto-logout TIMercccccvvvvieevieeeeeeieceiinne, 7

2.4.4. Multiple Commands in Progresscccccovcuveeeennns 8
2.5. Server Command Continuation Request 8
2.6. DataFormatsccoccoiiiviiiiiiiii 8

2.6.1. AOM i 9

2.6.2. NUMDET ...oovveiiiiie e 9

2.6.3. SHING eveeeeeeei i 9

2.6.3.1. 8-bit and Binary Stringsc.ccecvveeeiiiiieeeennns 10

2.6.4. Parenthesized LiStccoevvveveieeiiiiiiiieeeeen, 10

2.6.5. NIL oo 10

3. Protocol Elementsccoooevvviiiveiiiiieeceeie 10

3.1. Entries and Attributesccoeeeeeeiiiiiiiereennnns 10

3.1.1. Predefined Attributesccoovvvveeeiiiiiiennnnnen. 11

3.1.2. Attribute Metadatacooeeevvveeevireiieeeeennnn, 12

3.2. ACAP URL SChemeccocovuviiiiiiiiiiieeeeeeees 13

3.2.1. ACAP URL User Name and Authentication Mechanism 13
3.2.2. Relative ACAP URLSccvviiiiiiiiiie e, 14

3.3, CONEXIS ..oviiiiiiiieeii e, 14

Newman & Myers Standards Track [Page ii]

RFC 2244 ACAP November 1997

3.4.
3.5.
3.6.
4.
4.1.
4.2.
4.3.
5.
5.1.
5.2
5.3.
5.4.
5.5.
6.
6.1.
6.1.1.
6.2.
6.2.1.
6.2.2.
6.2.3.
6.2.4.
6.2.5.
6.2.6.
6.2.7.
6.2.8.
6.2.9.
6.3.
6.3.1.
6.4.
6.4.1.
6.4.2.
6.4.3.
6.4.4.
6.4.5.
6.5.
6.5.1.
6.5.2.
6.5.3.

6.5.4.
6.5.5.
6.5.6.

6.6.

6.6.1.
6.6.2.
6.6.3.

6.7.

6.7.1.
6.7.2.

Comparatorscccceveveveeeeeeeeee 15
Access Control Lists (ACLS)ccceevevvvvieeeiiiinnen. 17
Server Response Codesccccevveeeeeeiiiicninnnnn. 18
Namespace Conventionscccccceeeeeeiiiieniinnnen. 21
Dataset Namespaceeeceeeiiiieieeeeeeeeeeenn, 21
Attribute Namespaceccccccveeeeeeviiicciinveenenn. 21
Formal Syntax for Dataset and Attribute Namespace 22
Dataset Managementccceeeveviiivieenennnnns 23
Dataset Inheritanceccoocceeiiiiineennnnn, 23
Dataset Attributesccccvviiieeeeieieinins 24
Dataset Creationcc.ccccoveviiviiiiieieneeeennn, 25
Dataset Class Capabilitiescccccceveeeeiiiiinnnns 25
Dataset QUOLASccoeeevvvviiiieeeeriiiie e e, 26
Command and Response Specifications 26
Initial Connection ... 26
ACAP Untagged ReSpoNnSeccoooveuvvviiieeenennnn. 26
Any State ..., 27
NOOP Commandcccoviuieeeeiiiiiieeeeiiieeeeeaens 27
LANG Commandcoocvveeeeiiiiiineniiieee e 28
LANG Intermediate Responseccccoovvveeeennnn. 28
LOGOUT Commandccceeeeveiiiieiiiiiieeeeeaaeeenns 29
OK RESPONSE ... 29
NO RESPONSE ..o 29
BAD RESPONSEcovvvviiiieiiiiiiiiii e 30
BYE Untagged ReESPONSEceevveveeeeeriiinvnrnennnn 30
ALERT Untagged ReSPONSEcooccvvvveeriiinerennnne 31
Non-Authenticated Statecocceeeeiiiiieeeens 31
AUTHENTICATE Commandcccccvvreeeiivireeesnnn, 31
Searching ..., 33
SEARCH Commandccccovvvieeeniiiiieeeneiieenn. 33
ENTRY Intermediate ReSponsecccceeeeeuvvvvnnnnn. 37
MODTIME Intermediate ReSponsecccceeeeenee. 38
REFER Intermediate Responseccccccveeeennnnee. 38
Search Examples ..., 38
CONEXLS ..o 39
FREECONTEXT Commandccccooevvveveerniiienennnnne 39
UPDATECONTEXT Commandcccccveevniiiieneennnnn. 40
ADDTO Untagged ReSPONSEecccveeeeriiiieeenninne 40
REMOVEFROM Untagged Responsecccceeeeeeninnen. 41
CHANGE Untagged Responseccccccceveviiiviiinnnenn. 41
MODTIME Untagged ReSpoONSecceeveeeeeeiiinnnnns 42
Dataset modificationccccceveviiiiineennnnne 42
STORE Commandcccoeeeeiniiieneeiniiiee e 42
DELETEDSINCE Commandcccccvvvvvereeeeseiiinnnns 45
DELETED Intermediate ReSpPONSecccvvveeennnnen. 45
Access Control List Commandscccceeeeeeeennnns 45
SETACL Commandccccoeeviiiiiiiiiiiiiieieeeeeenn, 46
DELETEACL Commandccccooevveeeeiiiiiieeeennne 46

Newman & Myers Standards Track [Page iii]

RFC 2244 ACAP November 1997

6.7.3. MYRIGHTS Commandcccocverivverirereiineeennen 47
6.7.4. MYRIGHTS Intermediate Responseccccccvveeeene 47
6.7.5. LISTRIGHTS Commandcccccoeeeiiiieriineniieenns a7
6.7.6. LISTRIGHTS Intermediate Responseccccuuvuneee. 48
6.8, QUOLAS ...ovvvviiiiieiiiin e 48

6.8.1. GETQUOTA CommMandccccevvrvrerreeenrirerineennns 48
6.8.3. QUOTA Untagged ReSponseoeecvvvvvvvennennnnn. 49
6.9. EXteNnSionsccccccceiiiiiiiiiiiiiiinneeee e 49

7. Registration Procedurescccccoovuveeeenninnen. 49

7.1. ACAP CapabilitieScccceeeeiiiiiiiiiiiieeeeeee, 50

7.2. ACAP Response COdesccccvvvieeeieieeeeannnnnns 50
7.3. Dataset Classesccccovevniveeiiieeiiieeenieens 51

7.4, Vendor SUBLreecccccoeiiiee e 51

8. Formal Syntaxcccccceeeeviiieieeiniiieee e, 52

9. Multi-lingual Considerationscccccuveeee. 61

10. Security Considerationsccccccceeeviiiuviennnen. 62

11. Acknowledgmentsccccceeiiiiiiiiiiiiiieenneeennn, 63

12. Authors’ ADAressescccoceveeenieeniiieeennn. 63
APPENTICES ...t 64

A. References ..o 64

B. ACAP Keyword INdeXcccceeeviiiieieiiiiieeeenns 66

C. Full Copyright Statement

Newman & Myers Standards Track [Page iv]

RFC 2244 ACAP November 1997

ACAP Protocol Specification
1. Introduction
1.1. Conventions Used in this Document

In examples, "C:" and "S:" indicate lines sent by the client and
server respectively. If such lines are wrapped without a new "C:" or
"S:" label, then the wrapping is for editorial clarity and is not

part of the command.

The key words "REQUIRED", "MUST", "MUST NOT", "SHOULD", "SHOULD NOT",
and "MAY" in this document are to be interpreted as described in "Key
words for use in RFCs to Indicate Requirement Levels" [KEYWORDS].

1.2. ACAP Data Model

An ACAP server exports a hierarchical tree of entries. Each level of
the tree is called a dataset, and each dataset is made up of a list

of entries. Each entry has a unique name and may contain any number
of named attributes. Each attribute within an entry may be single
valued or multi-valued and may have associated metadata to assist
access and interpretation of the value.

The rules with which a client interprets the data within a portion of
ACAP’s tree of entries are called a dataset class.

1.3. ACAP Design Goals

ACAP’s primary purpose is to allow users access to their

configuration data from multiple network-connected computers. Users
can then sit down in front of any network-connected computer, run any
ACAP-enabled application and have access to their own configuration
data. Because it is hoped that many applications will become ACAP-
enabled, client simplicity was preferred to server or protocol

simplicity whenever reasonable.

ACAP is designed to be easily manageable. For this reason, it
includes "inheritance" which allows one dataset to inherit default
attributes from another dataset. In addition, access control lists

are included to permit delegation of management and quotas are
included to control storage. Finally, an ACAP server which is
conformant to this base specification should be able to support most
dataset classes defined in the future without requiring a server
reconfiguration or upgrade.

Newman & Myers Standards Track [Page 1]

RFC 2244 ACAP November 1997

ACAP is designed to operate well with a client that only has
intermittent access to an ACAP server. For this reason, each entry
has a server maintained modification time so that the client may
detect changes. In addition, the client may ask the server for a

list of entries which have been removed since it last accessed the
server.

ACAP presumes that a dataset may be potentially large and/or the
client’s network connection may be slow, and thus offers server
sorting, selective fetching and change notification for entries
within a dataset.

As required for most Internet protocols, security, scalability and
internationalization were important design goals.

Given these design goals, an attempt was made to keep ACAP as simple
as possible. It is a traditional Internet text based protocol which
massively simplifies protocol debugging. It was designed based on

the successful IMAP [IMAP4] protocol framework, with a few
refinements.

1.4. Validation

By default, any value may be stored in any attribute for which the
user has appropriate permission and quota. This rule is necessary to
allow the addition of new simple dataset classes without
reconfiguring or upgrading the server.

In some cases, such as when the value has special meaning to the

server, it is useful to have the server enforce validation by

returning the INVALID response code to a STORE command. These cases
MUST be explicitly identified in the dataset class specification

which SHOULD include specific fixed rules for validation. Since a

given ACAP server may be unaware of any particular dataset class
specification, clients MUST NOT depend on the presence of enforced
validation on the server.

1.5. Definitions
access control list (ACL)
A set of identifier, rights pairs associated with an object. An
ACL is used to determine which operations a user is permitted to

perform on that object. See section 3.5.

attribute
A named value within an entry. See section 3.1.

Newman & Myers Standards Track [Page 2]

RFC 2244 ACAP November 1997

comparator
A named function which can be used to perform one or more of
three comparison operations: ordering, equality and substring
matching. See section 3.4.

context
An ordered subset of entries in a dataset, created by a SEARCH
command with a MAKECONTEXT modifier. See section 3.3.

dataset
One level of hierarchy in ACAP’s tree of entries.

dataset class specification
The rules which allow a client to interpret the data within a
portion of ACAP’s tree of entries.

entry
A set of attributes with a unique entry name. See section 3.1.

metadata
Information describing an attribute, its value and any access
controls associated with that attribute. See section 3.1.2.

NIL This represents the non-existence of a particular data item.
NUL A control character encoded as 0 in US-ASCII [US-ASCII].

octet
An 8-bit value. On most modern computer systems, an octet is
one byte.

SASL Simple Authentication and Security Layer [SASL].

UTC Universal Coordinated Time as maintained by the Bureau
International des Poids et Mesures (BIPM).

UTF-8
An 8-bit transformation format of the Universal Character Set
[UTF8]. Note that an incompatible change was made to the coded
character set referenced by [UTF8], so for the purpose of this
document, UTF-8 refers to the UTF-8 encoding as defined by
version 2.0 of Unicode [UNICODE-2], or ISO 10646 [ISO-10646]
including amendments one through seven.

Newman & Myers Standards Track [Page 3]

RFC 2244 ACAP November 1997

1.6. ACAP Command Overview

The AUTHENTICATE, NOOP, LANG and LOGOUT commands provide basic

protocol services. The SEARCH command is used to select, sort, fetch
and monitor changes to attribute values and metadata. The

UPDATECONTEXT and FREECONTEXT commands are also used to assist in

monitoring changes in attribute values and metadata. The STORE
command is used to add, modify and delete entries and attributes.
The DELETEDSINCE command is used to assist a client in
re-synchronizing a cache with the server. The GETQUOTA, SETACL,

DELETEACL, LISTRIGHTS and MYRIGHTS commands are used to examine

storage quotas and examine or modify access permissions.
2. Protocol Framework
2.1. Link Level

The ACAP protocol assumes a reliable data stream such as provided by
TCP. When TCP is used, an ACAP server listens on port 674.

2.2. Commands and Responses

An ACAP session consists of the establishment of a client/server
connection, an initial greeting from the server, and client/server
interactions. These client/server interactions consist of a client
command, server data, and a server completion result.

ACAP is a text-based line-oriented protocol. In general,
interactions transmitted by clients and servers are in the form of
lines; that is, sequences of characters that end with a CRLF. The
protocol receiver of an ACAP client or server is either reading a
line, or is reading a sequence of octets with a known count (a
literal) followed by a line. Both clients and servers must be
capable of handling lines of arbitrary length.

2.2.1. Client Protocol Sender and Server Protocol Receiver

The client command begins an operation. Each client command is
prefixed with a identifier (an alphanumeric string of no more than 32
characters, e.g., AO001, A0002, etc.) called a "tag". A different

tag SHOULD be generated by the client for each command.

There are two cases in which a line from the client does not

represent a complete command. In one case, a command argument is
guoted with an octet count (see the description of literal in section
2.6.3); in the other case, the command arguments require server

Newman & Myers Standards Track [Page 4]

RFC 2244 ACAP November 1997

feedback (see the AUTHENTICATE command). In some of these cases, the
server sends a command continuation request if it is ready for the

next part of the command. This response is prefixed with the token

npn

Note: If, instead, the server detected an error in a

command, it sends a BAD completion response with tag
matching the command (as described below) to reject the
command and prevent the client from sending any more of the
command.

It is also possible for the server to send a completion or
intermediate response for some other command (if multiple
commands are in progress), or untagged data. In either
case, the command continuation request is still pending;
the client takes the appropriate action for the response,
and reads another response from the server.

The ACAP server reads a command line from the client, parses the
command and its arguments, and transmits server data and a server
command completion result.

2.2.2. Server Protocol Sender and Client Protocol Receiver

Data transmitted by the server to the client come in four forms:
command continuation requests, command completion results,
intermediate responses, and untagged responses.

A command continuation request is prefixed with the token "+".

A command completion result indicates the success or failure of the
operation. It is tagged with the same tag as the client command
which began the operation. Thus, if more than one command is in
progress, the tag in a server completion response identifies the
command to which the response applies. There are three possible
server completion responses: OK (indicating success), NO (indicating
failure), or BAD (indicating protocol error such as unrecognized
command or command syntax error).

An intermediate response returns data which can only be interpreted
within the context of a command in progress. It is tagged with the
same tag as the client command which began the operation. Thus, if
more than one command is in progress, the tag in an intermediate
response identifies the command to which the response applies. A
tagged response other than "OK", "NO", or "BAD" is an intermediate
response.

Newman & Myers Standards Track [Page 5]

RFC 2244 ACAP November 1997

An untagged response returns data or status messages which may be
interpreted outside the context of a command in progress. Itis
prefixed with the token "*"'. Untagged data may be sent as a result

of a client command, or may be sent unilaterally by the server.

There is no syntactic difference between untagged data that resulted
from a specific command and untagged data that were sent
unilaterally.

The protocol receiver of an ACAP client reads a response line from
the server. It then takes action on the response based upon the
first token of the response, which may be a tag, a "*", or a "+" as
described above.

A client MUST be prepared to accept any server response at all times.
This includes untagged data that it may not have requested.

This topic is discussed in greater detail in the Server Responses
section.

2.3. Server States

An ACAP server is in one of three states. Most commands are valid in
only certain states. Itis a protocol error for the client to

attempt a command while the server is in an inappropriate state for

that command. In this case, a server will respond with a BAD command
completion result.

2.3.1. Non-Authenticated State
In non-authenticated state, the user must supply authentication
credentials before most commands will be permitted. This state is
entered when a connection starts.

2.3.2. Authenticated State
In authenticated state, the user is authenticated and most commands
will be permitted. This state is entered when acceptable
authentication credentials have been provided.

2.3.3. Logout State
In logout state, the session is being terminated, and the server will

close the connection. This state can be entered as a result of a
client request or by unilateral server decision.

Newman & Myers Standards Track [Page 6]

RFC 2244 ACAP November 1997

+ +
linitial connection and server greeting|
+ +
Il (1) Il (2
A% I
R +
|[non-authenticated| Il
S +
114 113) |
| WV |
R +
Il | authenticated | ||
[— +
I I (4) |
\AY; A%

| logout and close connection |
+ +

(1) connection (ACAP greeting)

(2) rejected connection (BYE greeting)

(3) successful AUTHENTICATE command

(4) LOGOUT command, server shutdown, or connection closed

2.4. Operational Considerations
2.4.1. Untagged Status Updates
At any time, a server can send data that the client did not request.
2.4.2. Response when No Command in Progress
Server implementations are permitted to send an untagged response
while there is no command in progress. Server implementations that
send such responses MUST deal with flow control considerations.
Specifically, they must either (1) verify that the size of the data
does not exceed the underlying transport’s available window size, or
(2) use non-blocking writes.
2.4.3. Auto-logout Timer
If a server has an inactivity auto-logout timer, that timer MUST be
of at least 30 minutes duration. The receipt of ANY command from the

client during that interval MUST suffice to reset the auto-logout
timer.

Newman & Myers Standards Track [Page 7]

RFC 2244 ACAP November 1997

2.4.4. Multiple Commands in Progress

The client is not required to wait for the completion result of a

command before sending another command, subject to flow control
constraints on the underlying data stream. Similarly, a server is

not required to process a command to completion before beginning
processing of the next command, unless an ambiguity would result
because of a command that would affect the results of other commands.
If there is such an ambiguity, the server executes commands to
completion in the order given by the client.

2.5. Server Command Continuation Request

The command continuation request is indicated by a "+" token instead
of atag. This indicates that the server is ready to accept the
continuation of a command from the client.

This response is used in the AUTHENTICATE command to transmit server
data to the client, and request additional client data. This

response is also used if an argument to any command is a

synchronizing literal (see section 2.6.3).

The client is not permitted to send the octets of a synchronizing

literal unless the server indicates that it expects it. This permits

the server to process commands and reject errors on a line-by-line
basis, assuming it checks for non-synchronizing literals at the end

of each line. The remainder of the command, including the CRLF that
terminates a command, follows the octets of the literal. If there

are any additional command arguments the literal octets are followed
by a space and those arguments.

Example: C: A099 FREECONTEXT {10}
S: + "Ready for additional command text"
C: FRED
C: FOOB
S: A099 OK "FREECONTEXT completed"
C: A044 BLURDYBLOOP {102856}
S: A044 BAD "No such command as 'BLURDYBLOOP™

2.6. Data Formats

ACAP uses textual commands and responses. Data in ACAP can be in one
of five forms: atom, number, string, parenthesized list or NIL.

Newman & Myers Standards Track [Page 8]

RFC 2244 ACAP November 1997

2.6.1. Atom

An atom consists of one to 1024 non-special characters. It must
begin with a letter. Atoms are used for protocol keywords.

2.6.2. Number

A number consists of one or more digit characters, and represents a
numeric value. Numbers are restricted to the range of an unsigned
32-bit integer: 0 < number < 4,294,967,296.

2.6.3. String

A string is in one of two forms: literal and quoted string. The
literal form is the general form of string. The quoted string form

is an alternative that avoids the overhead of processing a literal at
the cost of restrictions of what may be in a quoted string.

A literal is a sequence of zero or more octets (including CR and LF),
prefix-quoted with an octet count in the form of an open brace ("{"),
the number of octets, close brace ("}"), and CRLF. In the case of
literals transmitted from server to client, the CRLF is immediately
followed by the octet data.

There are two forms of literals transmitted from client to server.
The form where the open brace ("{") and nhumber of octets is
immediately followed by a close brace ("}") and CRLF is called a
synchronizing literal. When sending a synchronizing literal, the
client must wait to receive a command continuation request before
sending the octet data (and the remainder of the command). The other
form of literal, the non-synchronizing literal, is used to transmit a
string from client to server without waiting for a command
continuation request. The non-synchronizing literal differs from the
synchronizing literal by having a plus ("+") between the number of
octets and the close brace ("}") and by having the octet data
immediately following the CRLF.

A quoted string is a sequence of zero to 1024 octets excluding NUL,
CR and LF, with double quote (<">) characters at each end.

The empty string is represented as "™ (a quoted string with zero
characters between double quotes), as {0} followed by CRLF (a
synchronizing literal with an octet count of 0), or as {0+} followed
by a CRLF (a non-synchronizing literal with an octet count of 0).

Note: Even if the octet count is 0, a client transmitting a

synchronizing literal must wait to receive a command
continuation request.

Newman & Myers Standards Track [Page 9]

RFC 2244 ACAP November 1997

2.6.3.1. 8-hit and Binary Strings

Most strings in ACAP are restricted to UTF-8 characters and may not
contain NUL octets. Attribute values MAY contain any octets
including NUL.

2.6.4. Parenthesized List

Data structures are represented as a "parenthesized list"; a sequence
of data items, delimited by space, and bounded at each end by
parentheses. A parenthesized list can contain other parenthesized
lists, using multiple levels of parentheses to indicate nesting.

The empty list is represented as () -- a parenthesized list with no
members.

2.6.5. NIL

The special atom "NIL" represents the non-existence of a particular
data item that is represented as a string or parenthesized list, as
distinct from the empty string " or the empty parenthesized list ().

3. Protocol Elements

This section defines data formats and other protocol elements used
throughout the ACAP protocol.

3.1. Entries and Attributes

Within a dataset, each entry name is made up of zero or more UTF-8
characters other than slash ("/"). A slash separated list of

entries, one at each level of the hierarchy, forms the full path to

an entry.

Each entry is made up of a set of attributes. Each attribute has a
hierarchical name in UTF-8, with each component of the name separated
by a period (".").

The value of an attribute is either single or multi-valued. A single
value is NIL (has no value), or a string of zero or more octets. A
multi-value is a list of zero or more strings, each of zero or more

octets.

Attribute names are not permitted to contain asterisk ("*") or

percent ("%") and MUST be valid UTF-8 strings which do not contain
NUL. Invalid attribute names result in a BAD response. Entry names

Newman & Myers Standards Track [Page 10]

RFC 2244 ACAP November 1997

are not permitted to begin with "." or contain slash ("/") and MUST
be valid UTF-8 strings which do not contain NUL. Invalid entry names
in the entry field of a command result in a BAD response.

Use of non-visible UTF-8 characters in attribute and entry names is
discouraged.

3.1.1. Predefined Attributes
Attribute names which do not contain a dot (".") are reserved for
standardized attributes which have meaning in any dataset. The
following attributes are defined by the ACAP protocol.

entry
Contains the name of the entry. MUST be single valued.
Attempts to use illegal or multi-valued values for the entry
attribute are protocol errors and MUST result in a BAD
completion response. This is a special case.

modtime
Contains the date and time any read-write metadata in the entry
was last modified. This value MUST be in UTC, MUST be
automatically updated by the server.

The value consists of 14 or more US-ASCII digits. The first
four indicate the year, the next two indicate the month, the
next two indicate the day of month, the next two indicate the
hour (0 - 23), the next two indicate the minute, and the next
two indicate the second. Any further digits indicate fractions
of a second.

The time, particularly fractions of a second, need not be
accurate. Itis REQUIRED, however, that any two entries in a
dataset changed by successive modifications have strictly
ascending modtime values. In addition, each STORE command
within a dataset (including simultaneous stores from different
connections) MUST use different modtime values.

This attribute has enforced validation, so any attempt to STORE
a value in this attribute MAY result in a NO response with an
INVALID response code.

subdataset

If this attribute is set, it indicates the existence of a sub-
dataset of this entry.

Newman & Myers Standards Track [Page 11]

RFC 2244 ACAP November 1997

The value consists of a list of relative ACAP URLs (see section
3.2) which may be used to locate the sub-dataset. The base URL
is the full path to the entry followed by a slash ("/"). The

value "." indicates a subdataset is located directly under this

one. Multiple values indicate replicated copies of the

subdataset.

For example, if the dataset "/folder/site/" has an entry
"public-folder" with a subdataset attribute of ".", then there
exists a dataset "/folder/site/public-folder/". If the value of
the subdataset attribute was instead
"/lother.acap.domain//folder/site/public-folder/", that would
indicate the dataset is actually located on a different ACAP
server.

A dataset can be created by storing a "subdataset" attribute
including ".", and a sub-hierarchy of datasets is deleted by
storing a NIL value to the "subdataset" attribute on the entry

in the parent dataset.

This attribute has enforced syntax validation. Specifically, if

an attempt is made to STORE a non-list value (other than NIL),
an empty list, or one of the values does not follow the URL
syntax rules [BASIC-URL, REL-URL], then this will result in a NO
response with an INVALID response code.

3.1.2. Attribute Metadata

Each attribute is made up of metadata items which describe that
attribute, its value and any associated access controls. Metadata
items may be either read-only, in which case the client is never
permitted to modify the item, or read-write, in which case the client
may modify the item if the access control list (ACL) permits.

The following metadata items are defined in this specification:

acl The access control list for the attribute, if one exists. If
the attribute does not have an ACL, NIL is returned.
Read-write. See section 3.5 for the contents of an ACL.

attribute
The attribute name. Read-only.

myrights

The set of rights that the client has to the attribute.
Read-only. See section 3.5 for the possible rights.

Newman & Myers Standards Track [Page 12]

RFC 2244 ACAP November 1997

size This is the length of the value. In the case of a
multi-value, this is a list of lengths for each of the values.
Read-only.

value The value. For a multi-value, this is a list of single
values. Read-write.

Additional items of metadata may be defined in extensions to this
protocol. Servers MUST respond to unrecognized metadata by returning
a BAD command completion result.

3.2. ACAP URL scheme

ACAP URLs are used within the ACAP protocol for the "subdataset"
attribute, referrals and inheritance. They provide a convenient

syntax for referring to other ACAP datasets. The ACAP URL follows
the common Internet scheme syntax as defined in [BASIC-URL] except
that plaintext passwords are not permitted. If :<port> is omitted,

the port defaults to 674.

An ACAP URL has the following general form:

url-acap = "acap://" url-server "/" url-enc-entry [url-filter]
[url-extension]

The <url-server> element includes the hostname, and optional user
name, authentication mechanism and port number. The <url-enc-entry>
element contains the name of an entry path encoded according to the
rules in [BASIC-URL].

The <url-filter> element is an optional list of interesting attribute
names. If omitted, the URL refers to all attributes of the named
entry. The <url-extension> element is reserved for extensions to
this URL scheme.

Note that unsafe or reserved characters such as " " or "?" MUST be
hex encoded as described in the URL specification [BASIC-URL]. Hex
encoded octets are interpreted according to UTF-8 [UTFS8].

3.2.1. ACAP URL User Name and Authentication Mechanism

A user name and/or authentication mechanism may be supplied. They

are used in the "AUTHENTICATE" command after making the connection to
the ACAP server. If no user name or authentication mechanism is

supplied, then the SASL ANONYMOUS [SASL-ANON] mechanism is used by
default. If an authentication mechanism is supplied without a user

Newman & Myers Standards Track [Page 13]

RFC 2