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Abstract
This specification presents an optional method to add integrity protection directly to the Network
Service Header (NSH) used for Service Function Chaining (SFC). Also, this specification allows for
the encryption of sensitive metadata (MD) that is carried in the NSH.
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1. Introduction 
Many advanced Service Functions (SFs) are enabled for the delivery of value-added services.
Typically, SFs are used to meet various service objectives such as IP address sharing, avoiding
covert channels, detecting Denial-of-Service (DoS) attacks and protecting network
infrastructures against them, network slicing, etc. Because of the proliferation of such advanced
SFs together with complex service deployment constraints that demand more agile service
delivery procedures, operators need to rationalize their service delivery logic and control its
complexity while optimizing service activation time cycles. The overall problem space is
described in .

 presents a data plane architecture addressing the problematic aspects of existing
service deployments, including topological dependence and configuration complexity. It also
describes an architecture for the specification, creation, and maintenance of Service Function
Chains (SFCs) within a network, that is, how to define an ordered set of SFs and ordering
constraints that must be applied to packets/flows selected as a result of traffic classification. 

 specifies the SFC encapsulation: Network Service Header (NSH).

The NSH data is unauthenticated and unencrypted, forcing a service topology that requires
security and privacy to use a transport encapsulation that supports such features (

).

Note that some transport encapsulations (e.g., IPsec) only provide hop-by-hop security between
two SFC data plane elements (e.g., two Service Function Forwarders (SFFs), SFF to SF) and do not
provide SF-to-SF security of NSH metadata. For example, if IPsec is used, SFFs or SFs within a
Service Function Path (SFP) that are not authorized to access the sensitive metadata (e.g.,
privacy-sensitive information) will have access to the metadata. As a reminder, the metadata
referred to is information that is inserted by Classifiers or intermediate SFs and shared with
downstream SFs; such information is not visible to the communication endpoints (

).

The lack of such capability was reported during the development of  and . The
reader may refer to  for a discussion on the need for
more awareness about attacks from within closed domains.

10. IANA Considerations

11. References

11.1.  Normative References

11.2.  Informative References
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This specification fills that gap for SFC (that is, it defines the "NSH Variable Header-Based
Integrity" option mentioned in ). Concretely, this document adds
integrity protection and optional encryption of sensitive metadata directly to the NSH (Section
4). The integrity protection covers the packet payload and provides replay protection (Section
7.4). Thus, the NSH does not have to rely upon an underlying transport encapsulation for security.

This specification introduces new Variable-Length Context Headers to carry fields necessary for
integrity-protected NSH headers and encrypted Context Headers (Section 5). This specification is
only applicable to NSH MD Type 0x02 ( ). MTU considerations are
discussed in Section 8. This specification is not applicable to NSH MD Type 0x01 (

) because that MD Type only allows a Fixed-Length Context Header whose size is 16
bytes; that is not sufficient to accommodate both the metadata and message integrity of the NSH
data.

This specification limits access to NSH-supplied information along an SFP to entities that have a
need to interpret it.

The mechanism specified in this document does not preclude the use of transport security. Such
considerations are deployment specific.

It is out of the scope of this document to specify an NSH-aware control plane solution.

Section 8.2.1 of [RFC8300]

Section 2.5 of [RFC8300]
Section 2.4 of

[RFC8300]

SFC data plane element:

SFC control element:

Key Identifier:

2. Terminology 
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14   when, and only when, they appear in all
capitals, as shown here.

This document makes use of the terms defined in  and . The term "transport
encapsulation" used in this document refers to the outer encapsulation (e.g., Generic Routing
Encapsulation (GRE), IPsec, and Generic Protocol Extension for Virtual eXtensible Local Area
Network (VXLAN-GPE)) that is used to carry NSH-encapsulated packets as per 

.

The document defines the following terms:

Refers to NSH-aware SF, SFF, the SFC Proxy, or the Classifier as defined
in the SFC data plane architecture  and further refined in . 

Is a logical entity that instructs one or more SFC data plane elements on
how to process NSH packets within an SFC-enabled domain. 

Is used to identify keys to authorized entities. See, for example, "kid" usage in 
. 

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC7665] [RFC8300]

Section 4 of
[RFC8300]

[RFC7665] [RFC8300]

[RFC7635]
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NSH data:

NSH imposer:

The NSH is composed of a Base Header, a Service Path Header, and optional Context
Headers. NSH data refers to all the above headers and the packet or frame on which the NSH is
imposed to realize an SFP. 

Refers to an SFC data plane element that is entitled to impose the NSH with the
Context Headers defined in this document. 

Base Header:

Service Path Header:

Context Header(s):

3. Assumptions and Basic Requirements 
 specifies that the NSH data can be spread over three headers:

Provides information about the service header and the payload protocol. 

Provides path identification and location within an SFP. 

Carries metadata (i.e., context data) along a service path. 

The NSH allows sharing context information (a.k.a. metadata) with downstream NSH-aware data
plane elements on a per-SFC/SFP basis. To that aim:

The Classifier is instructed by an SFC control element about the set of context information to
be supplied for a given service function chain. 
An NSH-aware SF is instructed by an SFC control element about any metadata it needs to
attach to packets for a given service function chain. This instruction may occur any time
during the validity lifetime of an SFC/SFP. For a given service function chain, the NSH-aware
SF is also provided with an order for consuming a set of contexts supplied in a packet. 
An NSH-aware SF can also be instructed by an SFC control element about the behavior it
should adopt after consuming context information that was supplied in the NSH. For
example, the context information can be maintained, updated, or stripped. 
An SFC Proxy may be instructed by an SFC control element about the behavior it should
adopt to process the context information that was supplied in the NSH on behalf of an NSH-
unaware SF (e.g., the context information can be maintained or stripped). The SFC Proxy may
also be instructed to add some new context information into the NSH on behalf of an NSH-
unaware SF. 

In reference to Table 1:

Classifiers, NSH-aware SFs, and SFC proxies are entitled to update the Context Header(s). 
Only NSH-aware SFs and SFC proxies are entitled to update the Service Path Header. 
SFFs are entitled to modify the Base Header (TTL value, for example). Nevertheless, SFFs are
not supposed to act on the Context Headers or look into the content of the Context Headers
( ). 

Thus, the following requirements:

Only Classifiers, NSH-aware SFs, and SFC proxies must be able to encrypt and decrypt a given
Context Header. 

Section 2 of [RFC8300]

• 

• 

• 

• 

• 
• 
• 

Section 4.3 of [RFC7665]

• 
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Both encrypted and unencrypted Context Headers may be included in the same NSH. 
The solution must provide integrity protection for the Service Path Header. 
The solution must provide optional integrity protection for the Base Header. The implications
of disabling such checks are discussed in Section 9.1. 

• 
• 
• 

SFC Data Plane
Element

Insert, remove, or replace the
NSH

Update the NSH

Insert Remove Replace Decrement
Service Index

Update
Context

Header(s)

Classifier + + +

Service Function
Forwarder (SFF)

+

Service Function
(SF)

+ +

Service Function
Chaining (SFC)
Proxy

+ + + +

Table 1: Summary of NSH Actions 

4. Design Overview 

4.1. Supported Security Services 
This specification provides the functions described in the following subsections.

4.1.1. Encrypt All or a Subset of Context Headers 

The solution allows encrypting all or a subset of NSH Context Headers by Classifiers, NSH-aware
SFs, and SFC proxies.

As depicted in Table 2, SFFs are not involved in data encryption.

Data Plane
Element

Base and Service Path Headers
Encryption

Context Header
Encryption

Classifier No Yes

SFF No No

NSH-aware SF No Yes
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Classifier(s), NSH-aware SFs, and SFC proxies are instructed with the set of Context Headers
(privacy-sensitive metadata, typically) that must be encrypted. Encryption keying material is
only provided to these SFC data plane elements.

The control plane may indicate the set of SFC data plane elements that are entitled to supply a
given Context Header (e.g., in reference to their identifiers as assigned within the SFC-enabled
domain). It is out of the scope of this document to elaborate on how such instructions are
provided to the appropriate SFC data plane elements nor to detail the structure used to store the
instructions.

The Service Path Header ( ) is not encrypted because SFFs use the Service
Index (SI) in conjunction with the Service Path Identifier (SPI) for determining the next SF in the
path.

4.1.2. Integrity Protection 

The solution provides integrity protection for the NSH data. Two levels of assurance (LoAs) are
supported.

The first level of assurance is where all NSH data except the Base Header are integrity protected
(Figure 1). In this case, the NSH imposer may be a Classifier, an NSH-aware SF, or an SFC Proxy.
SFFs are not provided with authentication material. Further details are discussed in Section 5.1.

The second level of assurance is where all NSH data, including the Base Header, are integrity
protected (Figure 2). In this case, the NSH imposer may be a Classifier, an NSH-aware SF, an SFF, or
an SFC Proxy. Further details are provided in Section 5.2.

Data Plane
Element

Base and Service Path Headers
Encryption

Context Header
Encryption

SFC Proxy No Yes

NSH-unaware SF No No

Table 2: Encryption Function Supported by SFC Data Plane Elements 

Section 2 of [RFC8300]

Figure 1: First Level of Assurance 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                Transport Encapsulation                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
   |                Base Header                            |  |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  N
|  |                Service Path Header                    |  S
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  H
|  |                Context Header(s)                      |  |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
|  |                Original Packet                        |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
+------Scope of integrity-protected data
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The integrity-protection scope is explicitly signaled to NSH-aware SFs, SFFs, and SFC proxies in
the NSH by means of a dedicated MD Type (Section 5).

In both levels of assurance, the Context Headers and the packet on which the NSH is imposed are
subject to integrity protection.

Table 3 classifies the data plane elements as being involved or not involved in providing integrity
protection for the NSH.

4.2. One Secret Key, Two Security Services 
The Authenticated Encryption with Associated Data (AEAD) interface defined in 

 is used to encrypt the Context Headers that carry sensitive metadata and to provide
integrity protection for the encrypted Context Headers.

The secondary keys "MAC_KEY" and "ENC_KEY" are generated from the input secret key (K) as
follows; each of these two keys is an octet string:

Figure 2: Second Level of Assurance 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                Transport Encapsulation                |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
|  |                Base Header                            |  |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  N
|  |                Service Path Header                    |  S
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  H
|  |                Context Header(s)                      |  |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
|  |                Original Packet                        |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
+----Scope of integrity-protected data

Data Plane Element Integrity Protection

Classifier Yes

SFF No (first LoA); Yes (second LoA)

NSH-aware SF Yes

SFC Proxy Yes

NSH-unaware SF No

Table 3: Integrity Protection Supported by SFC Data Plane
Elements 

Section 5 of
[RFC5116]
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MAC_KEY:

ENC_KEY:

Consists of the initial MAC_KEY_LEN octets of K, in order. The MAC_KEY is used for
calculating the message integrity of the NSH data. In other words, the integrity protection
provided by the cryptographic mechanism is extended to also provide protection for the
unencrypted Context Headers and the packet on which the NSH is imposed. 

Consists of the final ENC_KEY_LEN octets of K, in order. The ENC_KEY is used as the
symmetric encryption key for encrypting the Context Headers. 

The Hashed Message Authentication Code (HMAC) algorithm discussed in  is used to
protect the integrity of the NSH data. The algorithm for implementing and validating HMACs is
provided in .

The advantage of using both AEAD and HMAC algorithms (instead of just AEAD) is that NSH-
aware SFs and SFC proxies only need to recompute the message integrity of the NSH data after
decrementing the SI and do not have to recompute the ciphertext. The other advantage is that
SFFs do not have access to the ENC_KEY and cannot act on the encrypted Context Headers, and
(in the case of the second level of assurance) SFFs do have access to the MAC_KEY. Similarly, an
NSH-aware SF or SFC Proxy not allowed to decrypt the Context Headers will not have access to
the ENC_KEY.

The authenticated encryption algorithm or HMAC algorithm to be used by SFC data plane
elements is typically controlled using the SFC control plane. Mandatory-to-implement
authenticated encryption and HMAC algorithms are listed in Section 4.3.

The authenticated encryption process takes four inputs, each of which is an octet string: a secret
key (ENC_KEY, referred to as "K" in ), a plaintext (P), associated data (A) (which contains
the data to be authenticated but not encrypted), and a nonce (N). A ciphertext (C) is generated as
an output as discussed in .

In order to decrypt and verify, the cipher takes ENC_KEY, N, A, and C as input. The output is either
the plaintext or an error indicating that the decryption failed as described in 

.

[RFC4868]

[RFC2104]

[RFC5116]

Section 2.1 of [RFC5116]

Section 2.2 of
[RFC5116]

4.3. Mandatory-to-Implement Authenticated Encryption and HMAC
Algorithms 
Classifiers, NSH-aware SFs, and SFC proxies  implement the AES_128_GCM 
algorithm and  implement the AES_192_GCM and AES_256_GCM algorithms.

Classifiers, NSH-aware SFs, and SFC proxies  implement the HMAC-SHA-256-128 algorithm
and  implement the HMAC-SHA-384-192 and HMAC-SHA-512-256 algorithms.

SFFs  implement the aforementioned cipher suites and HMAC algorithms.

Note: The use of the AES_128_CBC_HMAC_SHA_256 algorithm would have avoided the need for
a second 128-bit authentication tag, but due to the nature of how Cipher Block Chaining (CBC)
mode operates, AES_128_CBC_HMAC_SHA_256 allows for the malleability of plaintexts. This
malleability allows for attackers that know the Message Authentication Code (MAC) key but

MUST [GCM][RFC5116]
SHOULD

MUST
SHOULD

MAY
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not the encryption key to make changes in the ciphertext and, if parts of the plaintext are
known, create arbitrary blocks of plaintext. This specification mandates the use of separate
AEAD and MAC protections to prevent this type of attack.

4.4. Key Management 
The procedure for the allocation/provisioning of secret keys (K) and the authenticated encryption
algorithm or MAC_KEY and HMAC algorithm is outside the scope of this specification. As such, this
specification does not mandate the support of any specific mechanism.

The document does not assume nor preclude the following:

The same keying material is used for all the service functions used within an SFC-enabled
domain. 
Distinct keying material is used per SFP by all involved SFC data path elements. 
Per-tenant keys are used. 

In order to accommodate deployments relying upon keying material per SFC/SFP and also the
need to update keys after encrypting NSH data for a certain amount of time, this document uses
key identifiers to unambiguously identify the appropriate keying material and associated
algorithms for MAC and encryption. This use of in-band identifiers addresses the problem of the
synchronization of keying material.

Additional information on manual vs. automated key management and when one should be
used over the other can be found in .

The risk involved in using a group-shared symmetric key increases with the size of the group to
which it is shared. Additional security issues are discussed in Section 9.

• 

• 
• 

[RFC4107]

4.5. New NSH Variable-Length Context Headers 
New NSH Variable-Length Context Headers are defined in Section 5 for NSH data integrity
protection and, optionally, encryption of Context Headers carrying sensitive metadata.
Concretely, an NSH imposer includes (1) the key identifier to identify the keying material, (2) the
timestamp to protect against replay attacks (Section 7.4), and (3) MAC for the target NSH data
(depending on the integrity-protection scope) calculated using MAC_KEY and, optionally, Context
Headers encrypted using ENC_KEY.

An SFC data plane element that needs to check the integrity of the NSH data uses the MAC_KEY
and HMAC algorithm for the key identifier being carried in the NSH.

An NSH-aware SF or SFC Proxy that needs to decrypt some Context Headers uses ENC_KEY and
the decryption algorithm for the key identifier being carried in the NSH.

Section 7 specifies the detailed procedure.

RFC 9145 Integrity Protection for the NSH December 2021
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4.6. Encapsulation of NSH within NSH 
As discussed in , an SFC-enabled domain (called an upper-level domain)
may be decomposed into many sub-domains (called lower-level domains). In order to avoid
maintaining state to restore upper-level NSH information at the boundaries of lower-level
domains, two NSH levels are used: an Upper-NSH that is imposed at the boundaries of the upper-
level domain and a Lower-NSH that is pushed by the Classifier of a lower-level domain in front of
the original NSH (Figure 3). As such, the Upper-NSH information is carried along the lower-level
chain without modification. The packet is forwarded in the top-level domain according to the
Upper-NSH, while it is forwarded according to the Lower-NSH in a lower-level domain.

SFC data plane elements of a lower-level domain include the Upper-NSH when computing the
MAC.

Keying material used at the upper-level domain  be the same as the one used by a
lower-level domain.

Section 3 of [RFC8459]

Figure 3: Encapsulation of NSH within NSH 

   +---------------------------------+
   |     Transport Encapsulation     |
+->+---------------------------------+
|  |        Lower-NSH Header         |
|  +---------------------------------+
|  |        Upper-NSH Header         |
|  +---------------------------------+
|  |          Original Packet        |
+->+---------------------------------+
|
|
+----Scope of NSH security protection
     provided by a lower-level domain

SHOULD NOT

5. New NSH Variable-Length Context Headers 
This section specifies the format of new Variable-Length Context Headers that are used for NSH
integrity protection and, optionally, Context Header encryption.

In particular, this section defines two "MAC and Encrypted Metadata" Context Headers, each
having specific deployment constraints. Unlike Section 5.1, the level of assurance provided in 
Section 5.2 requires sharing MAC_KEY with SFFs. Both Context Headers have the same format as
shown in Figure 4.
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The "MAC and Encrypted Metadata" Context Headers are padded out to a multiple of 4 bytes as
per . The "MAC and Encrypted Metadata" Context Header, if included, 

 always be the last Context Header.

Figure 4: MAC and Encrypted Metadata Context Header 

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Metadata Class       |      Type     |U|    Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Key Id Len  |         Key Identifier (Variable)               ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                      Timestamp (8 bytes)                      ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Nonce Length  |           Nonce  (Variable)                   ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Message Authentication Code and optional Encrypted        |
   ~                  Context Headers (Variable)                   ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Section 2.2 of [RFC8300]
MUST

5.1. MAC#1 Context Header 
The MAC#1 Context Header is a Variable-Length Context Header that carries MAC for the Service
Path Header, Context Headers, and the inner packet on which NSH is imposed, calculated using
MAC_KEY and, optionally, Context Headers encrypted using ENC_KEY. The scope of the integrity
protection provided by this Context Header is depicted in Figure 5.

This MAC scheme does not require sharing MAC_KEY with SFFs. It does not require recomputing
the MAC by each SFF because of TTL processing. Section 9.1 discusses the possible threat
associated with this level of assurance.
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Metadata Class:

Type:

U:

Length:

Key Id Len:

Key Identifier:

Timestamp:

In reference to Figure 4, the description of the fields is as follows:

 be set to 0x0 ( ). 

0x02 (see Section 10). 

Unassigned bit ( ). 

Indicates the length of the variable-length metadata in bytes. Padding
considerations are discussed in . 

Variable. Carries the length of the key identifier in octets. 

Carries a variable-length Key Identifier object used to identify and deliver keys to
SFC data plane elements. This identifier is helpful for accommodating deployments
relying upon keying material per SFC/SFP. The key identifier helps to resolve the
problem of synchronization of keying material. A single key identifier is used to look
up both the ENC_KEY and the MAC_KEY associated with a key, and the corresponding
encryption and MAC algorithms used with those keys. 

Refer to Section 6 for more details about the structure of this field. 

Figure 5: Scope of MAC#1 

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<--+
   |          Service Path Identifier              | Service Index |   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   ~       Variable-Length Unencrypted Context Headers  (opt.)     ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   |          Metadata Class       |      Type     |U|    Length   |   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   | Key Id Len  |         Key Identifier (Variable)               ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   ~                      Timestamp (8 bytes)                      ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   | Nonce Length  |           Nonce  (Variable)                   ~   |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  ~                Encrypted Context Headers (opt.)               ~   |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  ~                 Message Authentication Code                   ~   |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  |                                                               |   |
|  ~               Inner Packet on which NSH is imposed            ~   |
|  |                                                               |   |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<--|
|                                                                      |
|                                       Integrity-Protection Scope ----+
+----Encrypted Data

MUST Section 2.2 of [RFC8300]

Section 2.5.1 of [RFC8300]

Section 2.5.1 of [RFC8300]
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Nonce Length:

Nonce:

Encrypted Context Headers:

Message Authentication Code:

Carries the length of the Nonce. If the Context Headers are only integrity
protected, "Nonce Length" is set to zero (that is, no "Nonce" is included). 

Carries the Nonce for the authenticated encryption operation (
). 

Carries the optional encrypted Context Headers. 

Covers the entire NSH data, excluding the Base Header. 

Section 3.1 of
[RFC5116]

Metadata Class:

Type:

5.2. MAC#2 Context Header 
The MAC#2 Context Header is a Variable-Length Context Header that carries the MAC for the
entire NSH data calculated using MAC_KEY and, optionally, Context Headers encrypted using
ENC_KEY. The scope of the integrity protection provided by this Context Header is depicted in 
Figure 6.

In reference to Figure 4, the description of the fields is as follows:

 be set to 0x0 ( ). 

0x03 (see Section 10). 

Figure 6: Scope of MAC#2 

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<--+
   |Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   |          Service Path Identifier              | Service Index |   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   ~       Variable-Length Unencrypted Context Headers  (opt.)     ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   |          Metadata Class       |      Type     |U|    Length   |   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   | Key Id Len  |         Key Identifier (Variable)               ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   ~                      Timestamp (8 bytes)                      ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   | Nonce Length  |           Nonce  (Variable)                   ~   |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  ~                Encrypted Context Headers (opt.)               ~   |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  ~                 Message Authentication Code                   ~   |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  |                                                               |   |
|  ~               Inner Packet on which NSH is imposed            ~   |
|  |                                                               |   |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<--|
|                                                                      |
|                                       Integrity-Protection Scope ----+
+----Encrypted Data

MUST Section 2.2 of [RFC8300]
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U:

Length:

Key Id Len:

Key Identifier:

Timestamp:

Nonce Length:

Nonce:

Encrypted Context Headers:

Message Authentication Code:

Unassigned bit ( ). 

Indicates the length of the variable-length metadata in bytes. Padding
considerations are discussed in . 

See Section 5.1. 

See Section 5.1. 

See Section 6. 

See Section 5.1. 

See Section 5.1. 

Carries the optional encrypted Context Headers. 

Covers the entire NSH data. 

Section 2.5.1 of [RFC8300]

Section 2.5.1 of [RFC8300]

Seconds:

+ Size:

+ Units:

Fraction:

+ Size:

+ Units:

6. Timestamp Format 
This section follows the template provided in .

The format of the Timestamp field introduced in Section 5 is depicted in Figure 7.

Timestamp field format:
Specifies the integer portion of the number of seconds since the epoch. 

32 bits 

Seconds 

Specifies the fractional portion of the number of seconds since the epoch. 

32 bits 

The unit is 2(-32) seconds, which is roughly equal to 233 picoseconds. 

Epoch:
The epoch is 1970-01-01T00:00 in UTC time. Note that this epoch value is different from the one
used in  (which will wrap around in 2036). 

Section 3 of [RFC8877]

Figure 7: Timestamp Field Format 

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Seconds                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Fraction                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Section 6 of [RFC5905]

RFC 9145 Integrity Protection for the NSH December 2021

Boucadair, et al. Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc8300#section-2.5.1
https://www.rfc-editor.org/rfc/rfc8300#section-2.5.1
https://www.rfc-editor.org/rfc/rfc8877#section-3
https://www.rfc-editor.org/rfc/rfc5905#section-6


Leap seconds:
This timestamp format is affected by leap seconds. The timestamp represents the number of
seconds elapsed since the epoch minus the number of leap seconds. 

Resolution:
The resolution is 2(-32) seconds. 

Wraparound:
This time format wraps around every 232 seconds, which is roughly 136 years. The next
wraparound will occur in the year 2106. 

Synchronization aspects:
It is assumed that SFC data plane elements are synchronized to UTC using a synchronization
mechanism that is outside the scope of this document. In typical deployments, SFC data plane
elements use NTP  for synchronization. Thus, the timestamp may be derived from
the NTP-synchronized clock, allowing the timestamp to be measured with respect to the clock
of an NTP server. Since this time format is specified in terms of UTC, it is affected by leap
seconds (in a manner analogous to the NTP time format, which is similar). Therefore, the value
of a timestamp during or slightly after a leap second may be temporarily inaccurate. 

[RFC5905]

7. Processing Rules 
The following subsections describe the processing rules for integrity-protected NSH and,
optionally, encrypted Context Headers.

7.1. Generic Behavior 
This document adheres to the recommendations in  for handling the
Context Headers at both ingress and egress SFC boundary nodes (i.e., to strip the entire NSH,
including Context Headers).

Failures of a Classifier to inject the Context Headers defined in this document  be logged
locally while a notification alarm  be sent to an SFC control element. Failures of an NSH-
aware node to validate the integrity of the NSH data  cause that packet to be discarded while
a notification alarm  be sent to an SFC control element. The details of sending notification
alarms (i.e., the parameters that affect the transmission of the notification alarms depending on
the information in the Context Header such as frequency, thresholds, and content in the alarm) 

 be configurable.

NSH-aware SFs and SFC proxies  be instructed to strip some encrypted Context Headers from
the packet or to pass the data to the next SF in the service function chain after processing the
content of the Context Headers. If no instruction is provided, the default behavior for
intermediary NSH-aware nodes is to maintain such Context Headers so that the information can
be passed to the next NSH-aware hops. NSH-aware SFs and SFC proxies  reapply the integrity
protection if any modification is made to the Context Headers (e.g., strip a Context Header,
update the content of an existing Context Header, insert a new Context Header).

Section 8.1 of [RFC8300]

SHOULD
MAY

MUST
MAY

SHOULD

MAY

MUST
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7.2. MAC NSH Data Generation 
After performing any Context Header encryption, the HMAC algorithm discussed in  is
used to integrity protect the target NSH data. An NSH imposer inserts a "MAC and Encrypted
Metadata" Context Header for integrity protection (Section 5).

The NSH imposer sets the MAC field to zero and then computes the message integrity for the
target NSH data (depending on the integrity-protection scope discussed in Section 5) using the
MAC_KEY and HMAC algorithm. It inserts the computed digest in the MAC field of the "MAC and
Encrypted Metadata" Context Header. The length of the MAC is decided by the HMAC algorithm
adopted for the particular key identifier.

The Message Authentication Code (T) computation process for the target NSH data with HMAC-
SHA-256-128() can be illustrated as follows:

An entity in the SFP that updates the NSH  follow the above behavior to maintain message
integrity of the NSH for subsequent validations.

7.3. Encrypted NSH Metadata Generation 
An NSH imposer can encrypt Context Headers carrying sensitive metadata, i.e., encrypted and
unencrypted metadata may be carried simultaneously in the same NSH packet (Sections 5 and 6).

In order to prevent pervasive monitoring , it is  to encrypt all Context
Headers. All Context Headers carrying privacy-sensitive metadata  be encrypted; by doing
so, privacy-sensitive metadata is not revealed to attackers. Privacy-specific threats are discussed
in .

Using the secret key (ENC_KEY) and authenticated encryption algorithm, the NSH imposer
encrypts the Context Headers (as set, for example, in Section 3) and inserts the resulting payload
in the "MAC and Encrypted Metadata" Context Header (Section 5). The additional authenticated

An NSH-aware SF or SFC Proxy that is not allowed to decrypt any Context Headers  be
given access to the ENC_KEY.

Otherwise, an NSH-aware SF or SFC Proxy that receives encrypted Context Headers, for which it is
not allowed to consume a specific Context Header it decrypts (but consumes others),  keep
that Context Header unaltered when forwarding the packet upstream.

Only one instance of a "MAC and Encrypted Metadata" Context Header (Section 5) is allowed in
an NSH level. If multiple instances of a "MAC and Encrypted Metadata" Context Header are
included in an NSH level, the SFC data plane element  process the first instance and ignore
subsequent instances and  log or increase a counter for this event as per 

. If NSH within NSH is used (Section 4.6), distinct LoAs may be used for each NSH level.

MTU and fragmentation considerations are discussed in Section 8.

MUST NOT

MUST

MUST
MAY Section 2.5.1 of

[RFC8300]

[RFC4868]

      T = HMAC-SHA-256-128(MAC_KEY, target NSH data)

MUST

[RFC7258] RECOMMENDED
MUST

Section 5.2 of [RFC6973]
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data input to the AEAD function is a zero-length byte string. The entire Context Header carrying
sensitive metadata is encrypted (that is, including the MD Class, Type, Length, and associated
metadata of each Context Header).

More details about the exact encryption procedure are provided in . In
this case, the associated data (A) input is zero length for AES Galois/Counter Mode (AES-GCM).

An authorized entity in the SFP that updates the content of an encrypted Context Header or
needs to add a new encrypted Context Header  also follow the aforementioned behavior.

Section 2.1 of [RFC5116]

MUST

7.4. Timestamp for Replay Attack Prevention 
The Timestamp imposed by an initial Classifier is left untouched along an SFP. However, it can be
updated when reclassification occurs ( ). The same considerations for
setting the Timestamp are followed in both initial classification and reclassification (Section 6).

The received NSH is accepted by an NSH-aware node if the Timestamp (TS) in the NSH is recent
enough to the reception time of the NSH (TSrt). The following formula is used for this check:

The Delta interval is a configurable parameter. The default value for the allowed Delta is 2
seconds. Special care should be taken when setting very low Delta values as this may lead to
dropping legitimate traffic. If the timestamp is not within the boundaries, then the SFC data plane
element receiving such packets  discard the NSH message.

Replay attacks within the Delta window may be detected by an NSH-aware node by recording a
unique value derived from the packet, such as a unique value from the MAC field value. Such an
NSH-aware node will detect and reject duplicates. If for legitimate service reasons some flows
have to be duplicated but still share a portion of an SFP with the original flow, legitimate duplicate
packets will be tagged by NSH-aware nodes involved in that segment as replay packets unless
sufficient entropy is added to the duplicate packet. How such an entropy is added is
implementation specific.

Note: Within the timestamp Delta window, defining a sequence number to protect against
replay attacks may be considered. In such a mode, NSH-aware nodes must discard packets
with duplicate sequence numbers within the timestamp Delta window. However, in
deployments with several instances of the same SF (e.g., cluster or load-balanced SFs), a
mechanism to coordinate among those instances to discard duplicate sequence numbers is
required. Because the coordination mechanism to comply with this requirement is service
specific, this document does not include this protection.

All SFC data plane elements must be synchronized among themselves. These elements may be
synchronized to a global reference time.

Section 4.8 of [RFC7665]

      -Delta < (TSrt - TS) < +Delta

MUST
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7.5. NSH Data Validation 
When an SFC data plane element that conforms to this specification needs to check the validity
of the NSH data, it  ensure that a "MAC and Encrypted Metadata" Context Header is included
in a received NSH packet. The imposer  silently discard the packet and  log an error at
least once per the SPI if at least one of the following is observed:

the "MAC and Encrypted Metadata" Context Header is missing, 
the enclosed key identifier is unknown or invalid (e.g., the corresponding key expired), or 
the timestamp is invalid (Section 7.4). 

If the timestamp check is successfully passed, the SFC data plane element proceeds with NSH data
integrity validation. After storing the value of the MAC field in the "MAC and Encrypted Metadata"
Context Header, the SFC data plane element fills the MAC field with zeros. Then, the SFC data
plane element generates the message integrity for the target NSH data (depending on the
integrity-protection scope discussed in Section 5) using the MAC_KEY and HMAC algorithm. If the
value of the newly generated digest is identical to the stored one, the SFC data plane element is
certain that the NSH data has not been tampered with and validation is therefore successful.
Otherwise, the NSH packet  be discarded. The comparison of the computed HMAC value to
the stored value  be done in a constant-time manner to thwart timing attacks.

7.6. Decryption of NSH Metadata 
If entitled to consume a supplied encrypted Context Header, an NSH-aware SF or SFC Proxy
decrypts metadata using (K) and a decryption algorithm for the key identifier in the NSH.

The authenticated encryption algorithm has only a single output, either a plaintext or a special
symbol (FAIL) that indicates that the inputs are not authentic ( ).

MUST
MUST MUST

• 
• 
• 

MUST
MUST

Section 2.2 of [RFC5116]

8. MTU Considerations 
The SFC architecture prescribes that additional information be added to packets to:

Identify SFPs: this is typically the NSH Base Header and Service Path Header. 
Carry metadata such as that defined in Section 5. 
Steer the traffic along the SFPs: This is realized by means of transport encapsulation. 

This added information increases the size of the packet to be carried along an SFP.

Aligned with , it is  that network operators increase the
underlying MTU so that NSH traffic is forwarded within an SFC-enabled domain without
fragmentation. The available underlying MTU should be taken into account by network
operators when providing SFs with the required Context Headers to be injected per SFP and the
size of the data to be carried in these Context Headers.

• 
• 
• 

Section 5 of [RFC8300] RECOMMENDED
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If the underlying MTU cannot be increased to accommodate the NSH overhead, network
operators may rely upon a transport encapsulation protocol with the required fragmentation
handling. The impact of activating such features on SFFs should be carefully assessed by network
operators ( ).

When dealing with MTU issues, network operators should consider the limitations of various
tunnel mechanisms such as those discussed in .

Section 5.6 of [RFC7665]

[INTERNET-IP-TUNNELS]

9. Security Considerations 
Data plane SFC-related security considerations, including privacy, are discussed in 

 and . In particular,  states that attached
metadata (i.e., Context Headers) should be limited to that which is necessary for correct
operation of the SFP. Also, that section indicates that  discusses metadata
considerations that operators can take into account when using NSH.

The guidelines for cryptographic key management are discussed in . The group key
management protocol-related security considerations discussed in  need to
be taken into consideration.

The interaction between the SFC data plane elements and a key management system 
be transmitted unencrypted since this would completely destroy the security benefits of the
integrity-protection solution defined in this document.

The secret key (K) must have an expiration time assigned as the latest point in time before which
the key may be used for integrity protection of NSH data and encryption of Context Headers.
Prior to the expiration of the secret key, all participating NSH-aware nodes  have the
control plane distribute a new key identifier and associated keying material so that when the
secret key is expired, those nodes are prepared with the new secret key. This allows the NSH
imposer to switch to the new key identifier as soon as necessary. It is  that the next
key identifier and associated keying material be distributed by the control plane well prior to the
secret key expiration time. Additional guidance for users of AEAD functions about rekeying can
be found in .

The security and integrity of the key-distribution mechanism is vital to the security of the SFC
system as a whole.

NSH data is exposed to several threats:

An on-path attacker modifying the NSH data. 
An attacker spoofing the NSH data. 
An attacker capturing and replaying the NSH data. 
Data carried in Context Headers revealing privacy-sensitive information to attackers. 
An attacker replacing the packet on which the NSH is imposed with a modified or bogus
packet. 

Section 6 of
[RFC7665] Section 8 of [RFC8300] Section 8.2.2 of [RFC8300]

[RFC8165]

[RFC4107]
Section 8 of [RFC4046]

MUST NOT

SHOULD

RECOMMENDED

[AEAD-LIMITS]

• 
• 
• 
• 
• 
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In an SFC-enabled domain where the above attacks are possible, (1) NSH data  be integrity
protected and replay protected, and (2) privacy-sensitive NSH metadata  be encrypted for
confidentiality preservation purposes. The Base and Service Path Headers are not encrypted.

MACs with two levels of assurance are defined in Section 5. Considerations specific to each level
of assurance are discussed in Sections 9.1 and 9.2.

The attacks discussed in  are handled based on the solution specified in this
document, with the exception of attacks dropping packets. Such attacks can be detected by
relying upon statistical analysis; such analysis is out of the scope of this document. Also, if SFFs
are not involved in the integrity checks, a misbehaving SFF that decrements SI while this should
be done by an SF (SF bypass attack) will be detected by an upstream SF because the integrity
check will fail.

Some events are logged locally with notification alerts sent by NSH-aware nodes to a Control
Element. These events  be rate limited.

The solution specified in this document does not provide data origin authentication.

In order to detect compromised nodes, it is assumed that appropriate mechanisms to monitor
and audit an SFC-enabled domain to detect misbehavior and to deter misuse are in place.
Compromised nodes can thus be withdrawn from active service function chains using
appropriate control plane mechanisms.

MUST
MUST

[ARCH-SFC-THREATS]

SHOULD

9.1. MAC#1 
An active attacker can potentially modify the Base Header (e.g., decrement the TTL so the next
SFF in the SFP discards the NSH packet). An active attacker can typically also drop NSH packets.
As such, this attack is not considered an attack against the security mechanism specified in the
document.

It is expected that specific devices in the SFC-enabled domain will be configured such that no
device other than the Classifiers (when reclassification is enabled), NSH-aware SFs, and SFC
proxies will be able to update the integrity-protected NSH data (Section 7.1), and no device other
than the NSH-aware SFs and SFC proxies will be able to decrypt and update the Context Headers
carrying sensitive metadata (Section 7.1). In other words, it is expected that the NSH-aware SFs
and SFC proxies in the SFC-enabled domain are considered fully trusted to act on the NSH data.
Only these elements can have access to sensitive NSH metadata and the keying material used to
integrity protect NSH data and encrypt Context Headers.

9.2. MAC#2 
SFFs can detect whether an illegitimate node has altered the content of the Base Header. Such
messages must be discarded with appropriate logs and alarms generated (see Section 7.1).

Similar to Section 9.1, no device other than the NSH-aware SFs and SFC proxies in the SFC-enabled
domain should be able to decrypt and update the Context Headers carrying sensitive metadata.
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       Introduction
       Many advanced Service Functions (SFs) are enabled for the delivery of
      value-added services. Typically, SFs are used to meet various service
      objectives such as IP address sharing, avoiding covert channels,
      detecting Denial-of-Service (DoS) attacks and protecting network
      infrastructures against them, network slicing, etc. Because of the
      proliferation of such advanced SFs together with complex service
      deployment constraints that demand more agile service delivery
      procedures, operators need to rationalize their service delivery logic
      and control its complexity while optimizing service activation time
      cycles. The overall problem space is described in  .
         presents a data plane
      architecture addressing the problematic aspects of existing service
      deployments, including topological dependence and configuration
      complexity. It also describes an architecture for the specification,
      creation, and maintenance of Service Function Chains (SFCs) within a
      network, that is, how to define an ordered set of SFs and ordering
      constraints that must be applied to packets/flows selected as a result
      of traffic classification.  
      specifies the SFC encapsulation: Network Service Header (NSH).
       The NSH data is unauthenticated and unencrypted, forcing a service
      topology that requires security and privacy to use a transport
      encapsulation that supports such features ( ).
       Note that some transport encapsulations (e.g., IPsec) only provide
      hop-by-hop security between two SFC data plane elements (e.g., two
      Service Function Forwarders (SFFs), SFF to SF) and do not provide
      SF-to-SF security of NSH metadata. For example, if IPsec is used, SFFs
      or SFs within a Service Function Path (SFP) that are not authorized to
      access the sensitive metadata (e.g., privacy-sensitive information) will
      have access to the metadata. As a reminder, the metadata referred to is
      information that is inserted by Classifiers or intermediate SFs and
      shared with downstream SFs; such information is not visible to the
      communication endpoints ( ).
       The lack of such capability was reported during the development of
        and  . The reader may refer to   for a discussion on the need for more awareness
      about attacks from within closed domains.
       This specification fills that gap for SFC (that is, it defines the
      "NSH Variable Header-Based Integrity" option mentioned in  ). Concretely, this
      document adds integrity protection and optional encryption of sensitive
      metadata directly to the NSH ( ). The integrity protection covers the packet payload
      and provides replay protection ( ). Thus, the NSH does not have to rely upon an
      underlying transport encapsulation for security.
       This specification introduces new Variable-Length Context Headers to
      carry fields necessary for integrity-protected NSH headers and encrypted
      Context Headers ( ). This
      specification is only applicable to NSH MD Type 0x02 ( ). MTU considerations
      are discussed in  . This
      specification is not applicable to NSH MD Type 0x01 ( ) because that MD
      Type only allows a Fixed-Length Context Header whose size is 16 bytes;
      that is not sufficient to accommodate both the metadata and message
      integrity of the NSH data.
       This specification limits access to NSH-supplied information along an
      SFP to entities that have a need to interpret it.
       The mechanism specified in this document does not preclude the use of
      transport security. Such considerations are deployment specific.
       It is out of the scope of this document to specify an NSH-aware
      control plane solution.
    
     
       Terminology
       The key words " MUST", " MUST NOT",
      " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
      " RECOMMENDED", " NOT RECOMMENDED",
      " MAY", and " OPTIONAL" in this document are
      to be interpreted as described in BCP 14     when, and
      only when, they appear in all capitals, as shown here.
       This document makes use of the terms defined in   and  . The term "transport encapsulation" used in this
      document refers to the outer encapsulation (e.g., Generic Routing
      Encapsulation (GRE), IPsec, and Generic Protocol Extension for Virtual
      eXtensible Local Area Network (VXLAN-GPE)) that is used to carry
      NSH-encapsulated packets as per  .
       The document defines the following terms:
       
         SFC data plane element:
         Refers to NSH-aware SF, SFF,
          the SFC Proxy, or the Classifier as defined in the SFC data plane
          architecture   and further refined in
           .
         SFC control element:
         Is a logical entity that
          instructs one or more SFC data plane elements on how to process NSH
          packets within an SFC-enabled domain.
         Key Identifier:
         Is used to identify keys to authorized entities. See, for example,
        "kid" usage in  .
         NSH data:
         The NSH is composed of a Base Header, a
          Service Path Header, and optional Context Headers. NSH data refers
          to all the above headers and the packet or frame on which the NSH is
          imposed to realize an SFP.
         NSH imposer:
         Refers to an SFC data plane element that
          is entitled to impose the NSH with the Context Headers defined in
          this document.
      
    
     
       Assumptions and Basic Requirements
         specifies that the NSH
      data can be spread over three headers:
       
         Base Header:
        
         Provides information about the service header and the payload protocol.
	
         Service Path Header:
        
         Provides path identification and location within an SFP.
	
         Context Header(s):
        
         Carries metadata (i.e., context data) along a service path.
	
      
       The NSH allows sharing context information (a.k.a. metadata) with
      downstream NSH-aware data plane elements on a per-SFC/SFP basis. To that
      aim:
       
         The Classifier is instructed by an SFC control element about the
          set of context information to be supplied for a given service
          function chain.
         An NSH-aware SF is instructed by an SFC control element about any
          metadata it needs to attach to packets for a given service function
          chain. This instruction may occur any time during the validity
          lifetime of an SFC/SFP. For a given service function chain, the
          NSH-aware SF is also provided with an order for consuming a set of
          contexts supplied in a packet.
         An NSH-aware SF can also be instructed by an SFC control element
          about the behavior it should adopt after consuming context
          information that was supplied in the NSH. For example, the context
          information can be maintained, updated, or stripped.
         An SFC Proxy may be instructed by an SFC control element about
          the behavior it should adopt to process the context information that
          was supplied in the NSH on behalf of an NSH-unaware SF (e.g., the
          context information can be maintained or stripped). The SFC Proxy
          may also be instructed to add some new context information into the
          NSH on behalf of an NSH-unaware SF.
      
       In reference to  :
       
         Classifiers, NSH-aware SFs, and SFC proxies are entitled to
          update the Context Header(s).
         Only NSH-aware SFs and SFC proxies are entitled to update the
          Service Path Header.
         SFFs are entitled to modify the Base Header (TTL value, for
          example). Nevertheless, SFFs are not supposed to act on the Context
          Headers or look into the content of the Context Headers ( ).
      
       Thus, the following requirements:
       
         Only Classifiers, NSH-aware SFs, and SFC proxies must be able to
          encrypt and decrypt a given Context Header.
         Both encrypted and unencrypted Context Headers may be included in
          the same NSH.
         The solution must provide integrity protection for the Service
          Path Header.
         The solution must provide optional integrity protection for the
          Base Header. The implications of disabling such checks are discussed
          in  .
      
       
         Summary of NSH Actions
         
           
             SFC Data Plane Element
             Insert, remove, or replace the NSH
             Update the NSH
          
           
             Insert
             Remove
             Replace
             Decrement Service Index
             Update Context Header(s)
          
        
         
           
             Classifier
             +
             
             +
             
             +
          
           
             Service Function Forwarder (SFF)
             
             +
             
             
             
          
           
             Service Function (SF)
             
             
             
             +
             +
          
           
             Service Function Chaining (SFC) Proxy
             +
             +
             
             +
             +
          
        
      
    
     
       Design Overview
       
         Supported Security Services
         This specification provides the functions described in the
        following subsections.
         
           Encrypt All or a Subset of Context Headers
           The solution allows encrypting all or a subset of NSH Context
          Headers by Classifiers, NSH-aware SFs, and SFC proxies.
           As depicted in  , SFFs are not involved in data
          encryption.
           
             Encryption Function Supported by SFC Data Plane Elements
             
               
                  Data Plane Element
                  Base and Service Path Headers Encryption
                 Context Header Encryption
              
            
             
               
                 Classifier
                 No
                 Yes
              
               
                 SFF
                 No
                 No
              
               
                  NSH-aware SF
                 No
                 Yes
              
               
                 SFC Proxy
                  No 
                 Yes
              
               
                 NSH-unaware SF
                 No
                 No
              
            
          
           Classifier(s), NSH-aware SFs, and SFC proxies are instructed with
          the set of Context Headers (privacy-sensitive metadata, typically)
          that must be encrypted. Encryption keying material is only provided
          to these SFC data plane elements.
           The control plane may indicate the set of SFC data plane elements
          that are entitled to supply a given Context Header (e.g., in
          reference to their identifiers as assigned within the SFC-enabled
          domain). It is out of the scope of this document to elaborate on how
          such instructions are provided to the appropriate SFC data plane
          elements nor to detail the structure used to store the
          instructions.
           The Service Path Header ( ) is not encrypted because SFFs use the Service
          Index (SI) in conjunction with the Service Path Identifier (SPI) for
          determining the next SF in the path.
        
         
           Integrity Protection
           The solution provides integrity protection for the NSH data. Two
          levels of assurance (LoAs) are supported.
           The first level of assurance is where all NSH data except the
          Base Header are integrity protected ( ).
          In this case, the NSH imposer may be a Classifier, an NSH-aware SF,
          or an SFC Proxy. SFFs are not provided with authentication material.
          Further details are discussed in  .
           
             First Level of Assurance
                +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                Transport Encapsulation                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
   |                Base Header                            |  |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  N
|  |                Service Path Header                    |  S
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  H
|  |                Context Header(s)                      |  |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
|  |                Original Packet                        |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                          
+------Scope of integrity-protected data                                                

          
           The second level of assurance is where all NSH data, including
          the Base Header, are integrity protected ( ). In this case, the NSH imposer may be a
          Classifier, an NSH-aware SF, an SFF, or an SFC Proxy. Further
          details are provided in  .
           
             Second Level of Assurance
                +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                Transport Encapsulation                |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
|  |                Base Header                            |  |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  N
|  |                Service Path Header                    |  S
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  H
|  |                Context Header(s)                      |  |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
|  |                Original Packet                        |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                           
+----Scope of integrity-protected data 
                                              

          
           The integrity-protection scope is explicitly signaled to
          NSH-aware SFs, SFFs, and SFC proxies in the NSH by means of a
          dedicated MD Type ( ).
           In both levels of assurance, the Context Headers and the packet
          on which the NSH is imposed are subject to integrity protection.
             classifies the data plane elements as being involved or not involved in
          providing integrity protection for the NSH.
           
             Integrity Protection Supported by SFC Data Plane Elements
             
               
                 Data Plane Element
                 Integrity Protection
              
            
             
               
                  Classifier
                  Yes
              
               
                  SFF
                  No (first LoA); Yes (second LoA)
              
               
                  NSH-aware SF
                 Yes
              
               
                  SFC Proxy
                 Yes
              
               
                  NSH-unaware SF
                  No
              
            
          
        
      
       
         One Secret Key, Two Security Services
         The Authenticated Encryption with Associated Data (AEAD) interface
        defined in   is used to
        encrypt the Context Headers that carry sensitive metadata and to
        provide integrity protection for the encrypted Context Headers.
         The secondary keys "MAC_KEY" and "ENC_KEY" are generated from the input
        secret key (K) as follows; each of these two keys is an octet
        string:
         
           MAC_KEY:
           Consists of the initial MAC_KEY_LEN octets
            of K, in order. The MAC_KEY is used for calculating the message
            integrity of the NSH data. In other words, the integrity
            protection provided by the cryptographic mechanism is extended to
            also provide protection for the unencrypted Context Headers and
            the packet on which the NSH is imposed.
           ENC_KEY:
           Consists of the final ENC_KEY_LEN octets of
            K, in order. The ENC_KEY is used as the symmetric encryption key
            for encrypting the Context Headers.
        
         The Hashed Message Authentication Code (HMAC) algorithm discussed
        in   is used to protect the integrity of
        the NSH data. The algorithm for implementing and validating HMACs is
        provided in  .
         The advantage of using both AEAD and HMAC algorithms (instead of
        just AEAD) is that NSH-aware SFs and SFC proxies only need to
        recompute the message integrity of the NSH data after decrementing
        the SI and do not have to recompute the ciphertext.
        The other advantage is that SFFs do not have access to the ENC_KEY and
        cannot act on the encrypted Context Headers, and (in the case of the
        second level of assurance) SFFs do have access to the MAC_KEY.
        Similarly, an NSH-aware SF or SFC Proxy not allowed to decrypt the
        Context Headers will not have access to the ENC_KEY.
         The authenticated encryption algorithm or HMAC algorithm to be used
        by SFC data plane elements is typically controlled using the SFC
        control plane. Mandatory-to-implement authenticated encryption and
        HMAC algorithms are listed in  .
         The authenticated encryption process takes four inputs, each of
        which is an octet string: a secret key (ENC_KEY, referred to as "K" in
         ), a plaintext (P), associated data (A)
        (which contains the data to be authenticated but not encrypted), and
        a nonce (N). A ciphertext (C) is generated as an output as discussed
        in  .
         In order to decrypt and verify, the cipher takes ENC_KEY,
        N, A, and C as input. The output is either the plaintext or an error indicating
        that the decryption failed as described in  .
      
       
         Mandatory-to-Implement Authenticated Encryption and HMAC Algorithms
         Classifiers, NSH-aware SFs, and SFC proxies  MUST implement the
        AES_128_GCM   
        algorithm and  SHOULD implement the AES_192_GCM and AES_256_GCM
        algorithms.
         Classifiers, NSH-aware SFs, and SFC proxies  MUST implement the
        HMAC-SHA-256-128 algorithm and  SHOULD implement the HMAC-SHA-384-192
        and HMAC-SHA-512-256 algorithms.
         SFFs  MAY implement the aforementioned cipher suites and HMAC
        algorithms.
        
          Note: The use of the AES_128_CBC_HMAC_SHA_256 algorithm would
	have avoided the need for a second 128-bit authentication tag, but due
	to the nature of how Cipher Block Chaining (CBC) mode operates,
	AES_128_CBC_HMAC_SHA_256 allows for the malleability of plaintexts. This
	malleability allows for attackers that know the Message Authentication Code (MAC) key but not the
	encryption key to make changes in the ciphertext and, if parts of the
	plaintext are known, create arbitrary blocks of plaintext. This
	specification mandates the use of separate AEAD and MAC protections to
	prevent this type of attack.
        
      
       
         Key Management
         The procedure for the allocation/provisioning of secret keys (K)
        and the authenticated encryption algorithm or MAC_KEY and HMAC algorithm
        is outside the scope of this specification. As such, this
        specification does not mandate the support of any specific
        mechanism.
         The document does not assume nor preclude the following:
         
           The same keying material is used for all the service functions
            used within an SFC-enabled domain.
           Distinct keying material is used per SFP by all involved SFC
            data path elements.
           Per-tenant keys are used.
        
         In order to accommodate deployments relying upon keying material
        per SFC/SFP and also the need to update keys after encrypting NSH data
        for a certain amount of time, this document uses key identifiers to
        unambiguously identify the appropriate keying material and associated
        algorithms for MAC and encryption. This use of in-band identifiers
        addresses the problem of the synchronization of keying material.
         Additional information on manual vs. automated key management and
        when one should be used over the other can be found in  .
         The risk involved in using a group-shared symmetric key increases
        with the size of the group to which it is shared. Additional security
        issues are discussed in  .
      
       
         New NSH Variable-Length Context Headers
         New NSH Variable-Length Context Headers are defined in   for NSH data integrity protection and,
        optionally, encryption of Context Headers carrying sensitive metadata.
        Concretely, an NSH imposer includes (1) the key identifier to identify
        the keying material, (2) the timestamp to protect against replay
        attacks ( ), and (3) MAC for the target NSH data (depending on the
        integrity-protection scope) calculated using MAC_KEY and,
        optionally, Context Headers encrypted using ENC_KEY.
         An SFC data plane element that needs to check the integrity of the
        NSH data uses the MAC_KEY and HMAC algorithm for the key identifier
        being carried in the NSH.
         An NSH-aware SF or SFC Proxy that needs to decrypt some Context
        Headers uses ENC_KEY and the decryption algorithm for the key
        identifier being carried in the NSH.
           specifies the detailed
        procedure.
      
       
         Encapsulation of NSH within NSH
         As discussed in  , an
        SFC-enabled domain (called an upper-level domain) may be decomposed into
        many sub-domains (called lower-level domains). In order to avoid
        maintaining state to restore upper-level NSH information at the
        boundaries of lower-level domains, two NSH levels are used: an
        Upper-NSH that is imposed at the boundaries of the upper-level domain
        and a Lower-NSH that is pushed by the Classifier of a lower-level
        domain in front of the original NSH ( ). As
        such, the Upper-NSH information is carried along the lower-level chain
        without modification. The packet is forwarded in the top-level domain
        according to the Upper-NSH, while it is forwarded according to the
        Lower-NSH in a lower-level domain.
         
           Encapsulation of NSH within NSH
           
   +---------------------------------+
   |     Transport Encapsulation     |
+->+---------------------------------+
|  |        Lower-NSH Header         |
|  +---------------------------------+
|  |        Upper-NSH Header         |
|  +---------------------------------+
|  |          Original Packet        |
+->+---------------------------------+
|
|                                          
+----Scope of NSH security protection 
     provided by a lower-level domain                                           

        
         SFC data plane elements of a lower-level domain include the
        Upper-NSH when computing the MAC.
         Keying material used at the upper-level domain  SHOULD NOT be the
        same as the one used by a lower-level domain.
      
    
     
       New NSH Variable-Length Context Headers
       This section specifies the format of new Variable-Length Context
      Headers that are used for NSH integrity protection and, optionally,
      Context Header encryption.
       In particular, this section defines two "MAC and Encrypted Metadata"
      Context Headers, each having specific deployment constraints. Unlike
       , the level of assurance provided
      in   requires sharing MAC_KEY with
      SFFs. Both Context Headers have the same format as shown in  .
       
         MAC and Encrypted Metadata Context Header
         
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Metadata Class       |      Type     |U|    Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Key Id Len  |         Key Identifier (Variable)               ~ 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   ~                      Timestamp (8 bytes)                      ~ 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | Nonce Length  |           Nonce  (Variable)                   ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   
   |     Message Authentication Code and optional Encrypted        |
   ~                  Context Headers (Variable)                   ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      
       The "MAC and Encrypted Metadata" Context Headers are padded out to a
      multiple of 4 bytes as per  .
      The "MAC and Encrypted Metadata" Context
      Header, if included,  MUST always be the last Context Header.
       
         MAC#1 Context Header
         The MAC#1 Context Header is a Variable-Length Context Header that
        carries MAC for the Service Path
        Header, Context Headers, and the inner packet on which NSH is imposed,
        calculated using MAC_KEY and, optionally, Context Headers encrypted
        using ENC_KEY. The scope of the integrity protection provided by this
        Context Header is depicted in  .
         This MAC scheme does not require sharing MAC_KEY with SFFs. It does
        not require recomputing the MAC by each SFF because of TTL
        processing.   discusses the possible threat
        associated with this level of assurance.
         
           Scope of MAC#1
           
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |    
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<--+
   |          Service Path Identifier              | Service Index |   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   ~       Variable-Length Unencrypted Context Headers  (opt.)     ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   |          Metadata Class       |      Type     |U|    Length   |   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   | Key Id Len  |         Key Identifier (Variable)               ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   ~                      Timestamp (8 bytes)                      ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   | Nonce Length  |           Nonce  (Variable)                   ~   |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  ~                Encrypted Context Headers (opt.)               ~   |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  ~                 Message Authentication Code                   ~   |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  |                                                               |   |
|  ~               Inner Packet on which NSH is imposed            ~   |
|  |                                                               |   |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<--|
|                                                                      | 
|                                       Integrity-Protection Scope ----+
+----Encrypted Data                                                

        
         In reference to  , the description of the
        fields is as follows:
         
           Metadata Class:
           
             MUST be set to 0x0 ( ).
           Type:
           0x02 (see  ).
           U:
           Unassigned bit ( ).
           Length:
           Indicates the length of the variable-length
            metadata in bytes. Padding considerations are discussed in
            .
           Key Id Len:
           Variable. Carries the length of the key
            identifier in octets.
           Key Identifier:
           Carries a variable-length Key
            Identifier object used to identify and deliver keys to SFC data
            plane elements. This identifier is helpful for accommodating
            deployments relying upon keying material per SFC/SFP. The key
            identifier helps to resolve the problem of synchronization of
            keying material. A single key identifier is used to look up both
            the ENC_KEY and the MAC_KEY associated with a key, and the
            corresponding encryption and MAC algorithms used with those
            keys.
           Timestamp:
           Refer to   for
            more details about the structure of this field.
           Nonce Length:
           Carries the length of the Nonce. If
            the Context Headers are only integrity protected, "Nonce Length"
            is set to zero (that is, no "Nonce" is included).
           Nonce:
           Carries the Nonce for the authenticated
            encryption operation ( ).
           Encrypted Context Headers:
           Carries the optional
            encrypted Context Headers.
           Message Authentication Code: 
           Covers the entire NSH
            data, excluding the Base Header.
        
      
       
         MAC#2 Context Header
         The MAC#2 Context Header is a Variable-Length Context Header that
        carries the MAC for the entire NSH data calculated using MAC_KEY and,
        optionally, Context Headers encrypted using ENC_KEY. The scope of the
        integrity protection provided by this Context Header is depicted in
         .
         
           Scope of MAC#2
           
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<--+
   |Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   |          Service Path Identifier              | Service Index |   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   ~       Variable-Length Unencrypted Context Headers  (opt.)     ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   |          Metadata Class       |      Type     |U|    Length   |   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   | Key Id Len  |         Key Identifier (Variable)               ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   ~                      Timestamp (8 bytes)                      ~   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
   | Nonce Length  |           Nonce  (Variable)                   ~   |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  ~                Encrypted Context Headers (opt.)               ~   |
+->+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  ~                 Message Authentication Code                   ~   |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
|  |                                                               |   |
|  ~               Inner Packet on which NSH is imposed            ~   |
|  |                                                               |   |
|  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<--|
|                                                                      | 
|                                       Integrity-Protection Scope ----+
+----Encrypted Data                     

        
         In reference to  , the description of the
        fields is as follows:
         
           Metadata Class:
           
             MUST be set to 0x0 ( ).
           Type:
           0x03 (see  ).
           U:
           Unassigned bit ( ).
           Length:
           Indicates the length of the variable-length
            metadata in bytes. Padding considerations are discussed in
             .
           Key Id Len:
           See  .
           Key Identifier:
           See  .
           Timestamp:
           See  .
           Nonce Length:
           See  .
           Nonce:
           See  .
           Encrypted Context Headers:
           Carries the optional
            encrypted Context Headers.
           Message Authentication Code:
           Covers the entire NSH
            data.
        
      
    
     
       Timestamp Format
       This section follows the template provided in  .
       The format of the Timestamp field introduced in   is depicted in  .
       
         Timestamp Field Format
         
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Seconds                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Fraction                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      
       
         Timestamp field format:
         
           
             Seconds:
             Specifies the integer portion of the number of seconds
          since the epoch.
             + Size:
              32 bits
             + Units:
              Seconds
             Fraction:
              Specifies the fractional portion of the number of
          seconds since the epoch.
             + Size:
              32 bits
             + Units:
             The unit is 2 (-32) seconds, which is roughly equal to
          233 picoseconds.
          
        
      
       
         Epoch:
         The epoch is 1970-01-01T00:00 in UTC time. Note that this epoch
        value is different from the one used in   (which will wrap around in
        2036).
         Leap seconds:
         This timestamp format is affected by leap seconds. The timestamp
          represents the number of seconds elapsed since the epoch minus the
          number of leap seconds.
         Resolution:
         The resolution is 2 (-32) seconds.
         Wraparound:
         This time format wraps around every 2 32 seconds, which is
          roughly 136 years. The next wraparound will occur in the year
          2106.
         Synchronization aspects:
         It is assumed that SFC data plane elements are synchronized to
          UTC using a synchronization mechanism that is outside the scope of
          this document. In typical deployments, SFC data plane elements use
          NTP   for synchronization. Thus, the
          timestamp may be derived from the NTP-synchronized clock, allowing
          the timestamp to be measured with respect to the clock of an NTP
          server. Since this time format is specified in terms of UTC, it is
          affected by leap seconds (in a manner analogous to the NTP time
          format, which is similar). Therefore, the value of a timestamp
          during or slightly after a leap second may be temporarily
          inaccurate.
      
    
     
       Processing Rules
       The following subsections describe the processing rules for
      integrity-protected NSH and, optionally, encrypted Context Headers.
       
         Generic Behavior
         This document adheres to the recommendations in   for handling the Context Headers at
        both ingress and egress SFC boundary nodes (i.e., to strip the entire
        NSH, including Context Headers).
         Failures of a Classifier to inject the Context Headers defined in
        this document  SHOULD be logged locally while a notification alarm  MAY
        be sent to an SFC control element. Failures of an NSH-aware node to
        validate the integrity of the NSH data  MUST cause that packet to be
        discarded while a notification alarm  MAY be sent to an SFC control
        element. The details of sending notification alarms (i.e., the
        parameters that affect the transmission of the notification alarms
        depending on the information in the Context Header such as frequency,
        thresholds, and content in the alarm)  SHOULD be configurable.
         NSH-aware SFs and SFC proxies  MAY be instructed to
        strip some encrypted Context Headers from the packet or to pass the
        data to the next SF in the service function chain after processing the
        content of the Context Headers. If no instruction is provided, the
        default behavior for intermediary NSH-aware nodes is to maintain such
        Context Headers so that the information can be passed to the next
        NSH-aware hops.  NSH-aware SFs and SFC proxies  MUST
        reapply the integrity protection if any modification is made to the
        Context Headers (e.g., strip a Context Header, update the content of
        an existing Context Header, insert a new Context Header).
         An NSH-aware SF or SFC Proxy that is not allowed to decrypt any
        Context Headers  MUST NOT be given access to the ENC_KEY.
         Otherwise, an NSH-aware SF or SFC Proxy that receives encrypted
        Context Headers, for which it is not allowed to consume a specific
        Context Header it decrypts (but consumes others),  MUST keep that
        Context Header unaltered when forwarding the packet upstream.
         Only one instance of a "MAC and Encrypted Metadata" Context Header
        ( ) is allowed in an NSH level. If multiple
        instances of a "MAC and Encrypted Metadata" Context Header are included
        in an NSH level, the SFC data plane element  MUST process the first
        instance and ignore subsequent instances and  MAY log or increase a
        counter for this event as per  . If NSH within NSH is used ( ), distinct LoAs may be used for each NSH
        level.
         MTU and fragmentation considerations are discussed in  .
      
       
         MAC NSH Data Generation
         After performing any Context Header encryption, the HMAC algorithm
        discussed in   is used to
        integrity protect the target NSH data. An NSH imposer inserts a "MAC
        and Encrypted Metadata" Context Header for integrity protection ( ).
         The NSH imposer sets the MAC field to zero and then computes the
        message integrity for the target NSH data (depending on the
        integrity-protection scope discussed in  ) using the MAC_KEY and HMAC algorithm. It inserts
        the computed digest in the MAC field of the "MAC and Encrypted
        Metadata" Context Header. The length of the MAC is decided by the HMAC
        algorithm adopted for the particular key identifier.
         The Message Authentication Code (T) computation process for the
        target NSH data with HMAC-SHA-256-128() can be illustrated as
        follows:
               T = HMAC-SHA-256-128(MAC_KEY, target NSH data)

         An entity in the SFP that updates the NSH  MUST follow the above
        behavior to maintain message integrity of the NSH for subsequent
        validations.
      
       
         Encrypted NSH Metadata Generation
         An NSH imposer can encrypt Context Headers carrying sensitive
        metadata, i.e., encrypted and unencrypted metadata may be carried
        simultaneously in the same NSH packet (Sections   and  ).
         In order to prevent pervasive monitoring  , it is  RECOMMENDED to encrypt all Context
        Headers. All Context Headers carrying privacy-sensitive metadata  MUST
        be encrypted; by doing so, privacy-sensitive metadata is not revealed
        to attackers. Privacy-specific threats are discussed in
         .
         Using the secret key (ENC_KEY) and authenticated encryption
        algorithm, the NSH imposer encrypts the Context Headers (as set, for
        example, in  ) and inserts the
        resulting payload in the "MAC and Encrypted Metadata" Context Header
        ( ). The additional authenticated
        data input to the AEAD function is a zero-length byte string. The
        entire Context Header carrying sensitive metadata is encrypted (that
        is, including the MD Class, Type, Length, and associated metadata of
        each Context Header).
         More details about the exact encryption procedure are provided in
         . In this
        case, the associated data (A) input is zero length for AES
        Galois/Counter Mode (AES-GCM).
         An authorized entity in the SFP that updates the content of an
        encrypted Context Header or needs to add a new encrypted Context
        Header  MUST also follow the aforementioned behavior.
      
       
         Timestamp for Replay Attack Prevention
         The Timestamp imposed by an initial Classifier is left untouched
        along an SFP. However, it can be updated when reclassification occurs
        ( ). The same
        considerations for setting the Timestamp are followed in both initial
        classification and reclassification ( ).
         The received NSH is accepted by an NSH-aware node if the Timestamp
        (TS) in the NSH is recent enough to the reception time of the NSH
        (TSrt). The following formula is used for this check:
               -Delta < (TSrt - TS) < +Delta

         The Delta interval is a configurable parameter. The default value
        for the allowed Delta is 2 seconds. Special care should be taken when
        setting very low Delta values as this may lead to dropping legitimate
        traffic. If the timestamp is not within the boundaries, then the SFC
        data plane element receiving such packets  MUST discard the NSH
        message.
         Replay attacks within the Delta window may be detected by an
        NSH-aware node by recording a unique value derived from the packet,
        such as a unique value from the MAC field value. Such an NSH-aware
        node will detect and reject duplicates. If for legitimate service
        reasons some flows have to be duplicated but still share a portion of
        an SFP with the original flow, legitimate duplicate packets will be
        tagged by NSH-aware nodes involved in that segment as replay packets
        unless sufficient entropy is added to the duplicate packet.  How such
        an entropy is added is implementation specific.
         
Note: Within the timestamp Delta window, defining a sequence number to protect
against replay attacks may be considered. In such a mode, NSH-aware nodes must
discard packets with duplicate sequence numbers within the timestamp Delta
window. However, in deployments with several instances of the same SF (e.g.,
cluster or load-balanced SFs), a mechanism to coordinate among those instances
to discard duplicate sequence numbers is required.  Because the coordination
mechanism to comply with this requirement is service specific, this document
does not include this protection.

        
         All SFC data plane elements must be synchronized among themselves.
        These elements may be synchronized to a global reference time.
      
       
         NSH Data Validation
         When an SFC data plane element that conforms to this specification
        needs to check the validity of the NSH data, it  MUST ensure that a
        "MAC and Encrypted Metadata" Context Header is included in a received
        NSH packet. The imposer  MUST silently discard the packet and  MUST log
        an error at least once per the SPI if at least one of the following is
        observed:
         
           the "MAC and Encrypted Metadata" Context Header is missing,
           the enclosed key identifier is unknown or invalid (e.g., the
            corresponding key expired), or
           the timestamp is invalid ( ).
        
         If the timestamp check is successfully passed, the SFC data plane
        element proceeds with NSH data integrity validation. After storing the
        value of the MAC field in the "MAC and Encrypted Metadata" Context
        Header, the SFC data plane element fills the MAC field with zeros.
        Then, the SFC data plane element generates the message integrity for
        the target NSH data (depending on the integrity-protection scope
        discussed in  ) using the MAC_KEY and
        HMAC algorithm. If the value of the newly generated digest is
        identical to the stored one, the SFC data plane element is certain
        that the NSH data has not been tampered with and validation is
        therefore successful.  Otherwise, the NSH packet  MUST
        be discarded. The comparison of the computed HMAC value to the stored
        value  MUST be done in a constant-time manner to thwart
        timing attacks.
      
       
         Decryption of NSH Metadata
         If entitled to consume a supplied encrypted Context Header, an
        NSH-aware SF or SFC Proxy decrypts metadata using (K) and a decryption
        algorithm for the key identifier in the NSH.
         The authenticated encryption algorithm has only a single output, either
        a plaintext or a special symbol (FAIL) that indicates that the inputs
        are not authentic ( ).
      
    
     
       MTU Considerations
       The SFC architecture prescribes that additional information be added
      to packets to: 
       
         Identify SFPs: this is typically the NSH Base Header and Service
          Path Header.
         Carry metadata such as that defined in  .
         Steer the traffic along the SFPs: This is realized by means of
        transport encapsulation.
      
       This added information increases the size of the packet to be carried
      along an SFP.
       Aligned with  , it is
       RECOMMENDED that network operators increase the underlying MTU so that
      NSH traffic is forwarded within an SFC-enabled domain without
      fragmentation. The available underlying MTU should be taken into account
      by network operators when providing SFs with the required Context
      Headers to be injected per SFP and the size of the data to be carried in
      these Context Headers.
       If the underlying MTU cannot be increased to accommodate the NSH
      overhead, network operators may rely upon a transport encapsulation
      protocol with the required fragmentation handling. The impact of
      activating such features on SFFs should be carefully assessed by network
      operators ( ).
       When dealing with MTU issues, network operators should consider the
      limitations of various tunnel mechanisms such as those discussed in
       .
    
     
       Security Considerations
       Data plane SFC-related security considerations, including privacy,
      are discussed in  
      and  . In
      particular,  
      states that attached metadata (i.e., Context Headers) should be limited
      to that which is necessary for correct operation of the SFP. Also, that section
      indicates that   discusses
      metadata considerations that operators can take into account when using
      NSH.
       The guidelines for cryptographic key management are discussed in
       . The group key management
      protocol-related security considerations discussed in   need to be taken into
      consideration.
       The interaction between the SFC data plane elements and a key
      management system  MUST NOT be transmitted unencrypted since
      this would completely destroy the security benefits of the
      integrity-protection solution defined in this document.
       The secret key (K) must have an expiration time assigned as the
      latest point in time before which the key may be used for integrity
      protection of NSH data and encryption of Context Headers. Prior to the
      expiration of the secret key, all participating NSH-aware nodes  SHOULD
      have the control plane distribute a new key identifier and associated
      keying material so that when the secret key is expired, those nodes are
      prepared with the new secret key. This allows the NSH imposer to switch
      to the new key identifier as soon as necessary. It is  RECOMMENDED that
      the next key identifier and associated keying material be distributed by
      the control plane well prior to the secret key expiration time.
      Additional guidance for users of AEAD functions about rekeying can be
      found in  .
       The security and integrity of the key-distribution mechanism is vital
      to the security of the SFC system as a whole.
       NSH data is exposed to several threats:
       
         An on-path attacker modifying the NSH data.
         An attacker spoofing the NSH data.
         An attacker capturing and replaying the NSH data.
         Data carried in Context Headers revealing privacy-sensitive
          information to attackers.
         An attacker replacing the packet on which the NSH is imposed with a
          modified or bogus packet.
      
       In an SFC-enabled domain where the above attacks are possible, (1)
      NSH data  MUST be integrity protected and
      replay protected, and (2) privacy-sensitive NSH metadata
       MUST be encrypted for confidentiality preservation
      purposes. The Base and Service Path Headers are not encrypted.
       MACs with two levels of assurance are defined in  . Considerations specific to each level of assurance
      are discussed in Sections   and
       .
       The attacks discussed in   are
      handled based on the solution specified in this document, with the
      exception of attacks dropping packets. Such attacks can be detected
      by relying upon statistical analysis; such analysis is out of the scope of
      this document. Also, if SFFs are not involved in the integrity checks, a
      misbehaving SFF that decrements SI while this should be done by an SF
      (SF bypass attack) will be detected by an upstream SF because the
      integrity check will fail.
       Some events are logged locally with notification alerts sent by
      NSH-aware nodes to a Control Element. These events  SHOULD be
      rate limited.
       The solution specified in this document does not provide data origin
      authentication.
       In order to detect compromised nodes, it is assumed that appropriate
      mechanisms to monitor and audit an SFC-enabled domain to detect
      misbehavior and to deter misuse are in place. Compromised nodes can thus
      be withdrawn from active service function chains using appropriate
      control plane mechanisms.
       
         MAC#1
         An active attacker can potentially modify the Base Header (e.g.,
        decrement the TTL so the next SFF in the SFP discards the NSH packet).
        An active attacker can typically also drop NSH packets. As such, this
        attack is not considered an attack against the security mechanism
        specified in the document.
         It is expected that specific devices in the SFC-enabled domain will
        be configured such that no device other than the Classifiers (when
        reclassification is enabled), NSH-aware SFs, and SFC proxies will be
        able to update the integrity-protected NSH data ( ), and no device other than the
        NSH-aware SFs and SFC proxies will be able to decrypt and update the
        Context Headers carrying sensitive metadata ( ). In other words, it is expected that the NSH-aware
        SFs and SFC proxies in the SFC-enabled domain are considered fully
        trusted to act on the NSH data. Only these elements can have access to
        sensitive NSH metadata and the keying material used to integrity
        protect NSH data and encrypt Context Headers.
      
       
         MAC#2
         SFFs can detect whether an illegitimate node has altered the
        content of the Base Header. Such messages must be discarded with
        appropriate logs and alarms generated (see  ).
         Similar to  , no device other than the
        NSH-aware SFs and SFC proxies in the SFC-enabled domain should be able
        to decrypt and update the Context Headers carrying sensitive
        metadata.
      
       
         Time Synchronization
           describes best current practices to
        be considered in deployments where SFC data plane elements use NTP for
        time-synchronization purposes.
         Also, a mechanism to provide cryptographic security for NTP is
        specified in  .
      
    
     
       IANA Considerations
       IANA has added the following types to the "NSH IETF-Assigned Optional
      Variable-Length Metadata Types" registry (0x0000 IETF Base NSH MD Class)
      at  .
      
       
         Additions to the NSH IETF-Assigned Optional Variable-Length Metadata Types Registry
         
           
             Value
             Description
             Reference
          
        
         
           
             0x02
             MAC and Encrypted Metadata #1
             RFC 9145
          
           
             0x03
             MAC and Encrypted Metadata #2
             RFC 9145
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             Key words for use in RFCs to Indicate Requirement Levels
             
               
            
             
             
               In many standards track documents several words are used to signify the requirements in the specification.  These words are often capitalized. This document defines these words as they should be interpreted in IETF documents.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
            
          
           
           
           
        
         
           
             Guidelines for Cryptographic Key Management
             
               
            
             
               
            
             
             
               The question often arises of whether a given security system requires some form of automated key management, or whether manual keying is sufficient.  This memo provides guidelines for making such decisions. When symmetric cryptographic mechanisms are used in a protocol, the presumption is that automated key management is generally but not always needed.  If manual keying is proposed, the burden of proving that automated key management is not required falls to the proposer.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
            
          
           
           
           
        
         
           
             Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec
             
               
            
             
               
            
             
             
               This specification describes the use of Hashed Message Authentication Mode (HMAC) in conjunction with the SHA-256, SHA-384, and SHA-512 algorithms in IPsec.  These algorithms may be used as the basis for data origin authentication and integrity verification mechanisms for the Authentication Header (AH), Encapsulating Security Payload (ESP), Internet Key Exchange Protocol (IKE), and IKEv2 protocols, and also as Pseudo-Random Functions (PRFs) for IKE and IKEv2.  Truncated output lengths are specified for the authentication-related variants, with the corresponding algorithms designated as HMAC-SHA-256-128, HMAC-SHA-384-192, and HMAC-SHA-512-256.  The PRF variants are not truncated, and are called PRF-HMAC-SHA-256, PRF-HMAC-SHA-384, and PRF-HMAC-SHA-512.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             An Interface and Algorithms for Authenticated Encryption
             
               
            
             
             
               This document defines algorithms for Authenticated Encryption with Associated Data (AEAD), and defines a uniform interface and a registry for such algorithms.  The interface and registry can be used as an application-independent set of cryptoalgorithm suites.  This approach provides advantages in efficiency and security, and promotes the reuse of crypto implementations.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Service Function Chaining (SFC) Architecture
             
               
            
             
               
            
             
             
               This document describes an architecture for the specification, creation, and ongoing maintenance of Service Function Chains (SFCs) in a network.  It includes architectural concepts, principles, and components used in the construction of composite services through deployment of SFCs, with a focus on those to be standardized in the IETF.  This document does not propose solutions, protocols, or extensions to existing protocols.
            
          
           
           
        
         
           
             Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words
             
               
            
             
             
               RFC 2119 specifies common key words that may be used in protocol  specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the  defined special meanings.
            
          
           
           
           
        
         
           
             Network Service Header (NSH)
             
               
            
             
               
            
             
               
            
             
             
               This document describes a Network Service Header (NSH) imposed on packets or frames to realize Service Function Paths (SFPs).  The NSH also provides a mechanism for metadata exchange along the instantiated service paths.  The NSH is the Service Function Chaining (SFC) encapsulation required to support the SFC architecture (defined in RFC 7665).
            
          
           
           
        
      
       
         Informative References
         
           
             Usage Limits on AEAD Algorithms
             
               ETH Zurich
            
             
               Mozilla
            
             
               Cloudflare
            
             
             
                  An Authenticated Encryption with Associated Data (AEAD) algorithm
   provides confidentiality and integrity.  Excessive use of the same
   key can give an attacker advantages in breaking these properties.
   This document provides simple guidance for users of common AEAD
   functions about how to limit the use of keys in order to bound the
   advantage given to an attacker.  It considers limits in both single-
   and multi-key settings.

              
            
          
           
           
           Work in Progress
        
         
           
             A Security Architecture Against Service Function Chaining Threats
             
               Department of ICMCT
            
             
               School of Electronic Engineering
            
             
             
                  Service Function Chaining (SFC) provides a special capability that
   defines an ordered list of network services as a virtual chain and
   makes a network more flexible and manageable.  However, SFC is
   vulnerable to various attacks caused by compromised switches,
   especially the middlebox-bypass attack.  In this document, we propose
   a security architecture that can detect not only middlebox-bypass
   attacks but also other incorrect forwarding actions by compromised
   switches.  The existing solutions to protect SFC against compromised
   switches and middlebox-bypass attacks can only solve individual
   problems.  The proposed architecture uses both probe-based and
   statistics-based methods to check the probe packets with random pre-
   assigned keys and collect statistics from middleboxes for detecting
   any abnormal actions in SFC.

              
            
          
           
           
           Work in Progress
        
         
           
             IP Tunnels in the Internet Architecture
             
               Independent consultant
            
             
               Cisco
            
             
             
                  This document discusses the role of IP tunnels in the Internet
   architecture. An IP tunnel transits IP datagrams as payloads in non-
   link layer protocols. This document explains the relationship of IP
   tunnels to existing protocol layers and the challenges in supporting
   IP tunneling, based on the equivalence of tunnels to links. The
   implications of this document are used to derive recommendations that
   update MTU and fragment issues in RFC 4459.

              
            
          
           
           
           Work in Progress
        
         
           
             Challenges and Changes in the Internet Threat Model
             
               Ericsson
            
             
               Trinity College Dublin
            
             
             
                  Communications security has been at the center of many security
   improvements in the Internet.  The goal has been to ensure that
   communications are protected against outside observers and attackers.

   This memo suggests that the existing RFC 3552 threat model, while
   important and still valid, is no longer alone sufficient to cater for
   the pressing security and privacy issues seen on the Internet today.
   For instance, it is often also necessary to protect against endpoints
   that are compromised, malicious, or whose interests simply do not
   align with the interests of users.  While such protection is
   difficult, there are some measures that can be taken and we argue
   that investigation of these issues is warranted.

   It is particularly important to ensure that as we continue to develop
   Internet technology, non-communications security related threats, and
   privacy issues, are properly understood.

              
            
          
           
           
           Work in Progress
        
         
           
             Multicast Security (MSEC) Group Key Management Architecture
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document defines the common architecture for Multicast Security (MSEC) key management protocols to support a variety of application, transport, and network layer security protocols.  It also defines the group security association (GSA), and describes the key management protocols that help establish a GSA.  The framework and guidelines described in this document permit a modular and flexible design of group key management protocols for a variety of different settings that are specialized to applications needs.  MSEC key management protocols may be used to facilitate secure one-to-many, many-to-many, or one-to-one communication.  This memo provides information for the Internet community.
            
          
           
           
        
         
           
             Network Time Protocol Version 4: Protocol and Algorithms Specification
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               The Network Time Protocol (NTP) is widely used to synchronize computer clocks in the Internet.  This document describes NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (NTPv3), described in RFC 1305, as well as previous versions of the protocol. NTPv4 includes a modified protocol header to accommodate the Internet Protocol version 6 address family.  NTPv4 includes fundamental improvements in the mitigation and discipline algorithms that extend the potential accuracy to the tens of microseconds with modern workstations and fast LANs.  It includes a dynamic server discovery scheme, so that in many cases, specific server configuration is not required.  It corrects certain errors in the NTPv3 design and implementation and includes an optional extension mechanism.   [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Privacy Considerations for Internet Protocols
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document offers guidance for developing privacy considerations for inclusion in protocol specifications.  It aims to make designers, implementers, and users of Internet protocols aware of privacy-related design choices.  It suggests that whether any individual RFC warrants a specific privacy considerations section will depend on the document's content.
            
          
           
           
        
         
           
             Pervasive Monitoring Is an Attack
             
               
            
             
               
            
             
             
               Pervasive monitoring is a technical attack that should be mitigated in the design of IETF protocols, where possible.
            
          
           
           
           
        
         
           
             Problem Statement for Service Function Chaining
             
               
            
             
               
            
             
             
               This document provides an overview of the issues associated with the deployment of service functions (such as firewalls, load balancers, etc.) in large-scale environments.  The term "service function                                         chaining" is used to describe the definition and instantiation of an ordered list of instances of such service functions, and the subsequent "steering" of traffic flows through those service functions.
               The set of enabled service function chains reflects operator service offerings and is designed in conjunction with application delivery and service and network policy.
               This document also identifies several key areas that the Service Function Chaining (SFC) working group will investigate to guide its architectural and protocol work and associated documents.
            
          
           
           
        
         
           
             Session Traversal Utilities for NAT (STUN) Extension for Third-Party Authorization
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This document proposes the use of OAuth 2.0 to obtain and validate ephemeral tokens that can be used for Session Traversal Utilities for NAT (STUN) authentication.  The usage of ephemeral tokens ensures that access to a STUN server can be controlled even if the tokens are compromised.
            
          
           
           
        
         
           
             Design Considerations for Metadata Insertion
             
               
            
             
             
               The IAB published RFC 7624 in response to several revelations of pervasive attacks on Internet communications.  This document considers the implications of protocol designs that associate metadata with encrypted flows.  In particular, it asserts that designs that share metadata only by explicit actions at the host are preferable to designs in which middleboxes insert metadata.
            
          
           
           
        
         
           
             Hierarchical Service Function Chaining (hSFC)
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               Hierarchical Service Function Chaining (hSFC) is a network architecture allowing an organization to decompose a large-scale network into multiple domains of administration.
               The goals of hSFC are to make a large-scale network easier to design, simpler to control, and supportive of independent functional groups within large network operators.
            
          
           
           
        
         
           
             Network Time Protocol Best Current Practices
             
               
            
             
               
            
             
               
            
             
             
               The Network Time Protocol (NTP) is one of the oldest protocols on the Internet and has been widely used since its initial publication. This document is a collection of best practices for the general operation of NTP servers and clients on the Internet.  It includes recommendations for the stable, accurate, and secure operation of NTP infrastructure.  This document is targeted at NTP version 4 as described in RFC 5905.
            
          
           
           
           
        
         
           
             Guidelines for Defining Packet Timestamps
             
               
            
             
               
            
             
               
            
             
             
               Various network protocols make use of binary-encoded timestamps that are incorporated in the protocol packet format, referred to as "packet timestamps" for short. This document specifies guidelines for defining packet timestamp formats in networking protocols at various layers. It also presents three recommended timestamp formats. The target audience of this document includes network protocol designers. It is expected that a new network protocol that requires a packet timestamp will, in most cases, use one of the recommended timestamp formats. If none of the recommended formats fits the protocol requirements, the new protocol specification should specify the format of the packet timestamp according to the guidelines in this document.
            
          
           
           
        
         
           
             Network Time Security for the Network Time Protocol
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This memo specifies Network Time Security (NTS), a mechanism for using Transport Layer Security (TLS) and Authenticated Encryption with Associated Data (AEAD) to provide cryptographic security for the client-server mode of the Network Time Protocol (NTP). 
               NTS is structured as a suite of two loosely coupled sub-protocols. The first (NTS Key Establishment (NTS-KE)) handles initial authentication and key establishment over TLS. The second (NTS Extension Fields for NTPv4) handles encryption and authentication during NTP time synchronization via extension fields in the NTP packets, and holds all required state only on the client via opaque cookies.
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