
ZETA _ _ _ _ _ _ _ _ _ _ _ _ operator
The Zeta operator returns Riemann's Zeta function,
Zeta (z) := sum(1/(k**z),k,1,infinity)
Zeta(2);
2
pi / 6
on rounded;
Zeta 1.01;
100.577943338
Numerical computation for the Zeta function for arguments close to 1 are tedious, because the series is converging very slowly. In this case a formula (e.g. found in Bender/Orzag: Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill) is used.
No numerical approximation for complex arguments is done.

Bernoulli Euler Zeta

BESSELJ _ _ _ _ _ _ _ _ _ _ _ _ operator
The BesselJ operator returns the Bessel function of the first kind.
BesselJ(1/2,pi); 0 on rounded; BesselJ(0,1); 0.765197686558

BESSELY _ _ _ _ _ _ _ _ _ _ _ _ operator
The BesselY operator returns the Bessel function of the second kind.
BesselY(<order>,<argument>)
BesselY (1/2,pi); - sqrt(2) / pi on rounded; BesselY (1,3); 0.324674424792
The operator BesselY is also called Weber's function.

HANKEL1 _ _ _ _ _ _ _ _ _ _ _ _ operator
The Hankel1 operator returns the Hankel function of the first kind.
on complex; Hankel1 (1/2,pi); - i * sqrt(2) / pi Hankel1 (1,pi); besselj(1,pi) + i*bessely(1,pi)
The operator Hankel1 is also called Bessel function of th e third kind. There is currently no numeric evaluation of Hankel functions.

HANKEL2 _ _ _ _ _ _ _ _ _ _ _ _ operator
The Hankel2 operator returns the Hankel function of the second kind.
on complex; Hankel2 (1/2,pi); - i * sqrt(2) / pi Hankel2 (1,pi); besselj(1,pi) - i*bessely(1,pi)
The operator Hankel2 is also called Bessel function of th e third kind. There is currently no numeric evaluation of Hankel functions.

BESSELI _ _ _ _ _ _ _ _ _ _ _ _ operator
The BesselI operator returns the modified Bessel function I.
on rounded; Besseli (1,1); 0.565159103992
The knowledge about the operator BesselI is currently fai rly limited.

BESSELK _ _ _ _ _ _ _ _ _ _ _ _ operator
The BesselK operator returns the modified Bessel function K.
df(besselk(0,x),x); - besselk(1,x)
There is currently no numeric support for the operator BesselK .

STRUVEH _ _ _ _ _ _ _ _ _ _ _ _ operator
The StruveH operator returns Struve's H function.
struveh(-3/2,x); - besselj(3/2,x) / i

STRUVEL _ _ _ _ _ _ _ _ _ _ _ _ operator
The StruveL operator returns the modified Struve L function .
struvel(-3/2,x); besseli(3/2,x)

KUMMERM _ _ _ _ _ _ _ _ _ _ _ _ operator
The KummerM operator returns Kummer's M function.
kummerm(1,1,x); x e on rounded; kummerm(1,3,1.3); 1.62046942914
Kummer's M function is one of the Confluent Hypergeometric functio ns. For reference see the hypergeometric operator.

KUMMERU _ _ _ _ _ _ _ _ _ _ _ _ operator
The KummerU operator returns Kummer's U function.
df(kummeru(1,1,x),x) - kummeru(2,2,x)
Kummer's U function is one of the Confluent Hypergeometric functio ns. For reference see the hypergeometric operator.

WHITTAKERW _ _ _ _ _ _ _ _ _ _ _ _ operator
The WhittakerW operator returns Whittaker's W function.
WhittakerW(2,2,2);
1
4*sqrt(2)*kummeru(-,5,2)
2
-------------------------
e
Whittaker's W function is one of the Confluent Hypergeometric func tions. For reference see the hypergeometric operator.

Bessel Functions

AIRY_AI _ _ _ _ _ _ _ _ _ _ _ _ operator
The Airy_Ai operator returns the Airy Ai function for a given argument.
on complex; on rounded; Airy_Ai(0); 0.355028053888 Airy_Ai(3.45 + 17.97i); - 5.5561528511e+9 - 8.80397899932e+9*i

AIRY_BI _ _ _ _ _ _ _ _ _ _ _ _ operator
The Airy_Bi operator returns the Airy Bi function for a given argument.
Airy_Bi(0); 0.614926627446 Airy_Bi(3.45 + 17.97i); 8.80397899932e+9 - 5.5561528511e+9*i

AIRY_AIPRIME _ _ _ _ _ _ _ _ _ _ _ _ operator
The Airy_Aiprime operator returns the Airy Aiprime function for a given argument.
Airy_Aiprime(0); - 0.258819403793 Airy_Aiprime(3.45+17.97i); - 3.83386421824e+19 + 2.16608828136e+19*i

AIRY_BIPRIME _ _ _ _ _ _ _ _ _ _ _ _ operator
The Airy_Biprime operator returns the Airy Biprime function for a given argument.
Airy_Biprime(0); Airy_Biprime(3.45 + 17.97i); 3.84251916792e+19 - 2.18006297399e+19*i

Airy Functions

JACOBISN _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobisn operator returns the Jacobi Elliptic function sn.
Jacobisn(0.672, 0.36) 0.609519691792 Jacobisn(1,0.9) 0.770085724907881

JACOBICN _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobicn operator returns the Jacobi Elliptic function cn.
Jacobicn(7.2, 0.6) 0.837288298482018 Jacobicn(0.11, 19) 0.994403862690043 - 1.6219006985556e-16*i

JACOBIDN _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobidn operator returns the Jacobi Elliptic function dn.
Jacobidn(15, 0.683) 0.640574162024592 Jacobidn(0,0) 1

JACOBICD _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobicd operator returns the Jacobi Elliptic function cd.
Jacobicd(1, 0.34) 0.657683337805273 Jacobicd(0.8,0.8) 0.925587311582301

JACOBISD _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobisd operator returns the Jacobi Elliptic function sd.
Jacobisd(12, 0.4) 0.357189729437272 Jacobisd(0.35,1) - 1.17713873203043

JACOBIND _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobind operator returns the Jacobi Elliptic function nd.
Jacobind(0.2, 17) 1.46553203037507 + 0.0000000000334032759313703*i Jacobind(30, 0.001) 1.00048958438

JACOBIDC _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobidc operator returns the Jacobi Elliptic function dc.
Jacobidc(0.003,1) 1 Jacobidc(2, 0.75) 6.43472885111

JACOBINC _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobinc operator returns the Jacobi Elliptic function nc.
Jacobinc(1,0) 1.85081571768093 Jacobinc(56, 0.4387) 39.304842663512

JACOBISC _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobisc operator returns the Jacobi Elliptic function sc.
Jacobisc(9, 0.88) - 1.16417697982095 Jacobisc(0.34, 7) 0.305851938390775 - 9.8768100944891e-12*i

JACOBINS _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobins operator returns the Jacobi Elliptic function ns.
Jacobins(3, 0.9) 1.00945801599785 Jacobins(0.887, 15) 0.683578280513975 - 0.85023411082469*i

JACOBIDS _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobisn operator returns the Jacobi Elliptic function ds.
Jacobids(98,0.223) - 1.061253961477 Jacobids(0.36,0.6) 2.76693172243692

JACOBICS _ _ _ _ _ _ _ _ _ _ _ _ operator
The Jacobics operator returns the Jacobi Elliptic function cs.
Jacobics(0, 0.767) infinity Jacobics(1.43, 0) 0.141734127352112

JACOBIAMPLITUDE _ _ _ _ _ _ _ _ _ _ _ _ operator
The JacobiAmplitude operator returns the amplitude of u.
JacobiAmplitude(<expression>,<integer>)
JacobiAmplitude(7.239, 0.427) 0.0520978301448978 JacobiAmplitude(0,0.1) 0
Amplitude u = asin(Jacobisn(u,m))

AGM_FUNCTION _ _ _ _ _ _ _ _ _ _ _ _ operator
The AGM_function operator returns a list of (N, AGM, list of aNtoa0, list of bNtob0, list of cNtoc0) where a0, b0 and c0 are the initial values; N is the index number of the last term used to generate the AGM. AGM is the Arithmetic Geometric Mean.
AGM_function(1,1,1)
1,1,1,1,1,1,0,1
AGM_function(1, 0.1, 1.3)
{6,
2.27985615996629,
{2.27985615996629, 2.27985615996629,
2.2798561599706, 2.2798624278857,
2.28742283656583, 2.55, 1},
{2.27985615996629, 2.27985615996629,
2.27985615996198, 2.2798498920555,
2.27230201920557, 2.02484567313166, 4.1},
{0, 4.30803136219904e-12, 0.0000062679151007581,
0.00756040868012758, 0.262577163434171, - 1.55, 5.9}}
The other Jacobi functions use this function with initial values a0=1, b0=sqrt(1-m), c0=sqrt(m).

LANDENTRANS _ _ _ _ _ _ _ _ _ _ _ _ operator
The landentrans operator generates the descending landen transformation of the given imput values, returning a list of these values; initial to final in each case.
landentrans(<expression>,<integer>)
landentrans(0,0.1)
{{0,0,0,0,0},{0.1,0.0025041751943776,
0.00000156772498954046,6.1444078 9914461e-13,0}}
The first list ascends in value, and the second descends in value.

ELLIPTICF _ _ _ _ _ _ _ _ _ _ _ _ operator
The EllipticF operator returns the Elliptic Integral of the First Kind.
EllitpicF(<expression>,<integer>)
EllipticF(0.3, 8.222) 0.3 EllipticF(7.396, 0.1) 7.58123216114307
The Complete Elliptic Integral of the First Kind can be found by putting the first argument to pi/2 or by using EllipticK and the second argument.

ELLIPTICK _ _ _ _ _ _ _ _ _ _ _ _ operator
The EllipticK operator returns the Elliptic value K.
EllipticK(0.2) 1.65962359861053 EllipticK(4.3) 0.808442364282734 - 1.05562492399206*i EllipticK(0.000481) 1.57098526617635
The EllipticK function is the Complete Elliptic Integral of the First Kind.

ELLIPTICKPRIME _ _ _ _ _ _ _ _ _ _ _ _ operator
The EllipticK' operator returns the Elliptic value K(m).
EllipticKprime(0.2) 2.25720532682085 EllipticKprime(4.3) 1.05562492399206 EllipticKprime(0.000481) 5.206621921966
The EllipticKprime function is the Complete Elliptic Inte gral of the First Kind of (1-m).

ELLIPTICE _ _ _ _ _ _ _ _ _ _ _ _ operator
The EllipticE operator used with two arguments returns the Elliptic Integral of the Second Kind.
EllipticE(<expression>,<integer>)
EllipticE(1.2,0.22) 1.15094019180949 EllipticE(0,4.35) 0 EllipticE(9,0.00719) 8.98312465929145
The Complete Elliptic Integral of the Second Kind can be obtained by using just the second argument, or by using pi/2 as the first argument.
The EllipticE operator used with one argument returns the Elliptic value E.
EllipticE(<integer>)
EllipticE(0.22) 1.48046637439519 EllipticE(pi/2, 0.22) 1.48046637439519

ELLIPTICTHETA _ _ _ _ _ _ _ _ _ _ _ _ operator
The EllipticTheta operator returns one of the four Theta functions. It cannot except any number other than 1,2,3 or 4 as its first argument.
EllipticTheta(1, 1.4, 0.72) 0.91634775373 EllipticTheta(2, 3.9, 6.1 ) -48.0202736969 + 20.9881034377 i EllipticTheta(3, 0.67, 0.2) 1.0083077448 EllipticTheta(4, 8, 0.75) 0.894963369304 EllipticTheta(5, 1, 0.1) ***** In EllipticTheta(a,u,m); a = 1,2,3 or 4.
Theta functions are important because every one of the Jacobian Elliptic functions can be expressed as the ratio of two theta functions.

JACOBIZETA _ _ _ _ _ _ _ _ _ _ _ _ operator
The JacobiZeta operator returns the Jacobian function Zeta.
JacobiZeta(3.2, 0.8) - 0.254536403439 JacobiZeta(0.2, 1.6) 0.171766095970451 - 0.0717028569800147*i
The Jacobian function Zeta is related to the Jacobian function The ta. But it is significantly different from Riemann's Zeta Function Zeta.

Jacobi's Elliptic Functions and Elliptic Integrals

POCHHAMMER _ _ _ _ _ _ _ _ _ _ _ _ operator
The Pochhammer operator implements the Pochhammer notation (shifted factorial).
pochhammer(17,4);
116280
pochhammer(1/2,z);
factorial(2*z)
--------------------
2*z
(2 *factorial(z))
A number of complex rules for Pochhammer are inactive, be cause they cause a huge system load in algebraic mode. If one wants to use more rules for the simplification of Pochhammer's notation, one can do:
let special!*pochhammer!*rules;

GAMMA _ _ _ _ _ _ _ _ _ _ _ _ operator
The Gamma operator returns the Gamma function.
gamma(10); 362880 gamma(1/2); sqrt(pi)

BETA _ _ _ _ _ _ _ _ _ _ _ _ operator
The Beta operator returns the Beta function defined by
Beta (z,w) := defint(t**(z-1)* (1 - t)**(w-1),t,0,1) .
Beta(2,2); 1 / 6 Beta(x,y); gamma(x)*gamma(y) / gamma(x + y)
The operator Beta is simplified towards the GAMMA operator.

PSI _ _ _ _ _ _ _ _ _ _ _ _ operator
The Psi operator returns the Psi (or DiGamma) function.
Psi(x) := df(Gamma(z),z)/ Gamma (z)
Psi(3); (2*log(2) + psi(1/2) + psi(1) + 3)/2 on rounded; - Psi(1); 0.577215664902
Euler's constant can be found as - Psi(1).

POLYGAMMA _ _ _ _ _ _ _ _ _ _ _ _ operator
The Polygamma operator returns the Polygamma function.
Polygamma(n,x) := df(Psi(z),z,n);
Polygamma(1,2);
2
(pi - 6) / 6
on rounded;
Polygamma(1,2.35);
0.52849689109
The Polygamma function is used for simplification of the ZETA function for some arguments.

Gamma and Related Functions

DILOG EXTENDED _ _ _ _ _ _ _ _ _ _ _ _ operator
The package specfn supplies an extended support for the dilog operator which implements the dilog arithm function.
dilog(x) := - defint(log(t)/(t - 1),t,1,x);
defint(log(t)/(t - 1),t,1,x);
- dilog (x)
dilog 2;
2
- pi /12
on rounded;
Dilog 20;
- 5.92783972438
The operator Dilog is sometimes called Spence's Integral for n = 2.

LAMBERT\_W FUNCTION _ _ _ _ _ _ _ _ _ _ _ _ operator
Lambert's W function is the inverse of the function w * e**w. It is used in the solve package for equations containing exponentials and logarithms.
Lambert_W(-1/e); -1 solve(w + log(w),w); w=lambert_w(1) on rounded; Lambert_W(-0.05); - 0.0527059835515
The current implementation will compute the principal branch in rounded mode only.

Miscellaneous Functions