|
Latin Hypercube Samples (lhs)
1.0
R, C++, and Rcpp code to generate Latin hypercube samples
|
Functions | |
| int | bosecheck (int q, int ncol) |
| int | bose (GaloisField &gf, bclib::matrix< int > &A, int ncol) |
| int | itopoly (int n, int q, int d, std::vector< int > &coef) |
| int | polyeval (GaloisField &gf, int d, std::vector< int > &poly, int arg, int *value) |
| int | bushcheck (int q, int str, int ncol) |
| int | bush (GaloisField &gf, bclib::matrix< int > &A, int str, int ncol) |
| int | addelkempcheck (int q, int p, int ncol) |
| int | addelkemp (GaloisField &gf, bclib::matrix< int > &A, int ncol) |
| int | bosebushcheck (int q, int p, int ncol) |
| int | bosebush (GaloisField &gf, bclib::matrix< int > &B, int ncol) |
| int | bosebushlcheck (int s, int p, int lam, int ncol) |
| int | bosebushl (GaloisField &gf, int lam, bclib::matrix< int > &B, int ncol) |
Namespace to construct Orthogonal Arrays using various algorithms
| int oacpp::oaconstruct::addelkemp | ( | GaloisField & | gf, |
| bclib::matrix< int > & | A, | ||
| int | ncol | ||
| ) |
Implement Addelman and Kempthorne's 1961 A.M.S. method with n=2
| gf | a Galois field |
| A | an matrix to return the orthogonal array |
| ncol | the desired number of columns |
| int oacpp::oaconstruct::addelkempcheck | ( | int | q, |
| int | p, | ||
| int | ncol | ||
| ) |
Test the inputs to the Addel-Kemp algorithm
| q | the order of Galois field |
| p | the prime basis of the Galois field |
| ncol | the number of columns in the orthogonal array |
| int oacpp::oaconstruct::bose | ( | GaloisField & | gf, |
| bclib::matrix< int > & | A, | ||
| int | ncol | ||
| ) |
Construct an orthogonal array using the bose algorithm
OA( q^2, q+1, q, 2 ) R.C. Bose (1938) Sankhya Vol 3 pp 323-338
| gf | a Galois field |
| A | an matrix to return the orthogonal array |
| ncol | the number of columns |
| int oacpp::oaconstruct::bosebush | ( | GaloisField & | gf, |
| bclib::matrix< int > & | B, | ||
| int | ncol | ||
| ) |
Construct an orthogonal array using the bosebush algorithm
OA( 2q^2, 2q+1, q, 2 ), only implemented for q=2^n Implement Bose and Bush's 1952 A.M.S. method with p=2, u=1
| gf | a Galois field |
| B | an matrix to return the orthogonal array |
| ncol | the desired number of columns |
| int oacpp::oaconstruct::bosebushcheck | ( | int | q, |
| int | p, | ||
| int | ncol | ||
| ) |
Test the inputs to the Bose-Bush algorithm (p == 2, ncol <= 2q + 1)
| q | the order of the Galois Field |
| p | the prime basis of the Galois Field (q = p^n) |
| ncol | the number of columns in the orthogonal array |
| int oacpp::oaconstruct::bosebushl | ( | GaloisField & | gf, |
| int | lam, | ||
| bclib::matrix< int > & | B, | ||
| int | ncol | ||
| ) |
Construct an orthogonal array using the bose-bush algorithm
| gf | a Galois field |
| lam | lambda |
| B | an matrix to return the orthogonal array |
| ncol | the desired number of columns |
| int oacpp::oaconstruct::bosebushlcheck | ( | int | s, |
| int | p, | ||
| int | lam, | ||
| int | ncol | ||
| ) |
Test the inputs to the Bose-Bush algorithm with lambda parameter (ncol <= lambda*q + 1)
| s | s = q / lambda |
| p | the prime basis of the Galois Field |
| lam | the lambda parameter |
| ncol | the number of columns in the orthogonal array |
| int oacpp::oaconstruct::bosecheck | ( | int | q, |
| int | ncol | ||
| ) |
Check the input to the bose algorithm (ncol <= q + 1) where q = p^n
| q | the number of symbols |
| ncol | the number of columns |
| int oacpp::oaconstruct::bush | ( | GaloisField & | gf, |
| bclib::matrix< int > & | A, | ||
| int | str, | ||
| int | ncol | ||
| ) |
Construct an orthogonal array using the bush algorithm
| gf | a Galois field |
| A | an matrix to return the orthogonal array |
| str | the array strength |
| ncol | the desired number of columns |
| int oacpp::oaconstruct::bushcheck | ( | int | q, |
| int | str, | ||
| int | ncol | ||
| ) |
Test the inputs to the Bush algorithm (ncol <= q + 1, str <= ncol, str < q + 1)
| q | the order of the Galois Field |
| str | the orthogonal array strength |
| ncol | the number of columns in the orthogonal array |
| int oacpp::oaconstruct::itopoly | ( | int | n, |
| int | q, | ||
| int | d, | ||
| std::vector< int > & | coef | ||
| ) |
Integer to polynomial
| n | the input integer |
| q | the order of the Galois field |
| d | the degree of the polynomial. A degree 3 polynomial will have 4 coefficients (x^0, x^1, x^2, x^3) |
| coef | vector of polynomial coefficients |
| int oacpp::oaconstruct::polyeval | ( | GaloisField & | gf, |
| int | d, | ||
| std::vector< int > & | poly, | ||
| int | arg, | ||
| int * | value | ||
| ) |
Evaluate a polynomial with coefficients, argument and result in a Galois field
| gf | a Galois field |
| d | the polynomial degree. A degree 3 polynomial will have 4 coefficients (x^0, x^1, x^2, x^3) |
| poly | the polynomial coefficients |
| arg | the value of the polynomial independent variable |
| value | the result |