BiocNeighbors 1.20.1
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 3365 387 4429 3465 9376 6313 2631 589 1196 5023
## [2,] 797 1399 8666 3960 6249 9065 3824 6220 7205 6688
## [3,] 3475 9791 8731 7414 6006 8139 9495 8093 986 2631
## [4,] 9765 2480 7507 8983 5599 6721 2587 6637 9028 4711
## [5,] 5483 7628 3967 5853 4548 8975 3147 9958 5897 9196
## [6,] 9439 2005 4096 1539 6159 5570 4068 430 9253 1052
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.8092533 0.9486768 0.9561160 0.9899128 1.001937 1.0039014 1.0290518
## [2,] 0.9459962 0.9881017 1.0045476 1.0061874 1.012161 1.0141041 1.0566691
## [3,] 1.0371169 1.1213335 1.1217155 1.1229984 1.125019 1.1251875 1.1469314
## [4,] 0.9693286 0.9813520 0.9984147 1.0018961 1.019948 1.0381206 1.0564381
## [5,] 0.8171108 0.8676689 0.9020651 0.9142418 0.963010 0.9866728 0.9891987
## [6,] 1.0201658 1.0376300 1.0569617 1.0641049 1.067901 1.0690782 1.0736088
## [,8] [,9] [,10]
## [1,] 1.0356061 1.0424124 1.0511163
## [2,] 1.0612347 1.0883250 1.0936329
## [3,] 1.1523470 1.1568710 1.2112980
## [4,] 1.0602041 1.0615220 1.0905735
## [5,] 0.9909155 0.9919524 0.9941895
## [6,] 1.0899429 1.0903524 1.1001512
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 4207 1925 9813 6743 5739
## [2,] 3594 1155 4905 7474 3241
## [3,] 3107 3576 5033 4005 8632
## [4,] 386 6812 3247 3232 2080
## [5,] 1848 2506 2118 8294 1904
## [6,] 5432 5558 7992 9020 1708
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.1086656 1.1229142 1.1396971 1.2005340 1.2044449
## [2,] 0.9193776 0.9433740 0.9795136 0.9867874 0.9871328
## [3,] 0.9664251 1.0471556 1.0674046 1.1045169 1.1432260
## [4,] 0.8694986 0.9339198 0.9925212 1.0182252 1.0460166
## [5,] 1.0522285 1.0948354 1.0979621 1.1414605 1.1561661
## [6,] 0.8329313 0.8960790 0.9602339 0.9741856 0.9886567
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "/tmp/RtmppMkKua/file16de5a52146b73.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.3.2 Patched (2023-11-13 r85521)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.20.1 knitr_1.45 BiocStyle_2.30.0
##
## loaded via a namespace (and not attached):
## [1] cli_3.6.2 rlang_1.1.2 xfun_0.41
## [4] jsonlite_1.8.8 S4Vectors_0.40.2 htmltools_0.5.7
## [7] stats4_4.3.2 sass_0.4.8 rmarkdown_2.25
## [10] grid_4.3.2 evaluate_0.23 jquerylib_0.1.4
## [13] fastmap_1.1.1 yaml_2.3.8 lifecycle_1.0.4
## [16] bookdown_0.37 BiocManager_1.30.22 compiler_4.3.2
## [19] codetools_0.2-19 Rcpp_1.0.11 BiocParallel_1.36.0
## [22] lattice_0.22-5 digest_0.6.33 R6_2.5.1
## [25] parallel_4.3.2 bslib_0.6.1 Matrix_1.6-4
## [28] tools_4.3.2 BiocGenerics_0.48.1 cachem_1.0.8