
Programmers' Technical Reference
Guide for the Java side of the TITAN

TTCN-3 Toolset
Kristóf Szabados

Version 2/198 17-CRL 113 200/6, Rev. F, 2019-05-17

Table of Contents
1. About the Document . Ê2

1.1. Purpose . Ê2

1.2. Target Groups . Ê2

1.3. Naming Convention . Ê2

1.4. Typographical Conventions . Ê2

2. TTCN-3 Limitations in this Version . Ê3

3. TTCNÐ3 Language Extensions . Ê4

3.1. TTCNÐ3 Preprocessing. Ê4

3.2. Implicit Message Encoding . Ê4

3.3. RAW Encoder and Decoder . Ê4

3.4. TEXT Encoder and Decoder . Ê4

3.5. XML Encoder and Decoder . Ê4

3.6. JSON Encoder and Decoder . Ê5

3.7. OER Encoder and Decoder . Ê5

3.8. Build Consistency Checks . Ê5

3.9. Negative Testing . Ê5

3.10. Differences between the Java side runtime, the C side Load Test Runtime and the C side

Function Test Runtime

Ê6

3.11. Profiling and code coverage . Ê6

4. Supported ASN.1 Constructs and Limitations . Ê7

5. Compiling TTCNÐ3 and ASN.1 Modules . Ê8

5.1. Build Options . Ê8

5.2. Makefile Generator . Ê9

5.3. The Compilation Process for TTCNÐ3 and ASN.1 Modules . Ê9

5.4. Particularities of ASN.1 Modules . Ê12

5.5. Using Component Relation Constraints from TTCNÐ3 . Ê12

6. The Run-time Configuration File . Ê13

7. Code Coverage of TTCN-3 Modules . Ê14

8. The TTCN-3 Debugger . Ê15

9. Test Ports . Ê16

9.1. Generating the Skeleton . Ê16

9.2. Message-based Example . Ê17

9.3. Procedure-based Example . Ê18

9.4. Test Port Functions . Ê19

9.5. Support of address Type . Ê30

9.6. Provider Port Types . Ê31

9.7. Tips and Tricks . Ê34

9.8. Setting timestamps . Ê35

10. Logger Plug-ins . Ê37

11. Encoding and Decoding . Ê38

11.1. The Common API . Ê38

11.2. BER. Ê42

11.3. RAW . Ê42

11.4. TEXT. Ê44

11.5. XML Encoding (XER) . Ê44

11.6. JSON. Ê44

12. Mapping TTCNÐ3 Data Types to Java Constructs . Ê45

12.1. Mapping of Names and Identifiers . Ê45

12.2. Modules . Ê46

12.3. Predefined TTCNÐ3 Data Types . Ê46

12.4. Compound Data Types . Ê88

12.5. Predefined Functions . Ê103

12.6. Using the Signature Classes . Ê110

13. Tips & Troubleshooting . Ê114

13.1. Type Aliasing . Ê114

13.2. Using External Java Functions in TTCNÐ3 Test Suites . Ê114

13.3. Logging in Test Ports or External Functions . Ê116

13.4. Reusing Logged Values or Templates in TTCNÐ3 Code . Ê120

13.5. Using the TTCN-3 Preprocessing Functionality . Ê121

13.6. Error Recovery during Test Execution . Ê122

14. References . Ê123

15. Abbreviations . Ê125

Abstract

This document describes detailed information on writing components of executable test suites for
the Java side of the TITAN TTCN-3 Toolset.

Copyright

Copyright (c) 2000-2019 Ericsson Telecom AB.
All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html .

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson should have no liability for any error or damage
of any kind resulting from the use of this document.

1

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. About the Document

1.1. Purpose
The purpose of this document is to provide detailed information on writing components, for
example, test ports, and so on, for executable test suites, for the Java side of the TITAN TTCN-3
Toolset.

1.2. Target Groups
This document is intended for programmers of TTCNÐ3 test suites, using the prototype Java code
generator provided in the plugins, with information in addition to that provided in the TITAN User
Guide , API Technical Reference and Programmers' Technical Reference Guide . It is recommended
that the programmer reads the TITAN User Guide before reading this document.

1.3. Naming Convention
This document uses the expressions "C side" and "Java side" in relation to the TITAN TTCN-3 Toolset
and Test Executor.

C side is used to reference the "original" part of the TITAN TTCN-3 Toolset available from command
line. The compiler, makefile generator, the libraries users need to link their executables to during
build time.

Java side is used to reference the part of the TITAN TTCN-3 Toolset supporting compiling TTCN-3
and ASN.1 code into Java classes via Java source code and the runtime libraries needed for this
form of building.

1.4. Typographical Conventions
This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
Õ+Õ to represent key combinations. For example, Ctrl+Click

The character ` /' is used to denote a menu and sub-menu sequence. For example, File / Open .

Monospaced font is used represent system elements such as command and parameter names,
program names, path names, URLs, directory names and code examples.

Bold monospaced font is used for commands that must be entered at the Command Line Interface
(CLI).

2

Chapter 2. TTCN-3 Limitations in this
Version
The present Test Executor is an implementation of TTCNÐ3 Core Language standard ([1]) with
support of ASN.1 ([3]). However, the TTCNÐ3 language constructs detailed in [27] are not supported
in the current version of the Test Executor on both the C and the Java side. The following list extend
that list, with the TTCNÐ3 language constructs that are not supported, in addition, in the current
version of the Java side of the Test Executor.

When applicable, the relevant clause of the standard text ([1]) is given within parentheses after
each limitation. The list of ASN.1 related limitations can be found in chapter 4.25.

¥ The update, interleave , label , goto statements are not yet supported. (19.7, 19.8, 20.4 and 22.3.1
in [1])

¥ The hostId predefined function is not yet supported.

¥ Additionally the @profiler.start , @profiler.stop , string2ttcn TITAN extensions are also not yet
supported on the Java side.

¥ The @profiler.running TITAN extension is also not supported.

¥ Concatenating template strings is not yet supported on the Java side.

¥ Type compatibility is not yet supported on the Java side. [1: except record of/set of types for
certain element types, see section 4.32.2]

WARNING
The current version of the Java side of the Test Executor is just a prototype
version. Please note that there might still be some changes in some of its APIs.

3

Chapter 3. TTCNÐ3 Language Extensions
The Test Executor supports several non-standard additions to TTCNÐ3 Core Language, as detailed in
[27] , in order to improve its usability or provide backward compatibility with older versions.

The following list contains the TTCNÐ3 language extensions that are not yet supported by the Java
side of the Test Executor. The sections/features not listed here are supported.

3.1. TTCNÐ3 Preprocessing
Preprocessing of the TTCN-3 files with a C style preprocessor is supported by the Java side.

Contrary to the C side, on the Java side preprocessing is supported by an internal pre-processor.
That is the generated Java files will already have the pre-processable content pre-processed.

Parameterized macros are not supported on the Java side.

3.2. Implicit Message Encoding
Compared to the description in section 3.22 of [27] the Java side has 2 major differences: Only RAW
encoding is supported for now. The syntax to be used in Java differs slightly from the of used in C++

The TTCNÐ3 attribute errorbehavior(INCOMPL_ANY:ERROR), for example, instead of being mapped to
the following C++ statement

TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_INCOMPL_ANY,
Ê TTCN_EncDec::EB_ERROR);

is mapped to the following Java statement

TTCN_EncDec.set_error_behavior(TTCN_EncDec.error_type.ET_INCOMPL_ANY,
Ê TTCN_EncDec.error_behavior_type.EB_ERROR);

3.3. RAW Encoder and Decoder
The Java side supports the same RAW Encoder and Decoder features as the C side.

3.4. TEXT Encoder and Decoder
The TEXT Encoder and Decoder is not yet supported on the Java side.

3.5. XML Encoder and Decoder
The XML Encoder and Decoder is not yet supported on the Java side.

4

3.6. JSON Encoder and Decoder
The XML Encoder and Decoder is not yet supported on the Java side.

3.7. OER Encoder and Decoder
The OER Encoder and Decoder is not yet supported on the Java side.

3.8. Build Consistency Checks
Executable test suites are typically put together from many sources, some of which (test ports,
function libraries, etc.) are not written by the test writers themselves, but are developed
independently. Sometimes, a test suite requires an external component with a certain feature or
bug fix, or a certain minimum TITAN version. Building with a component which does not meet a
requirement, or an old TITAN version, typically results in malfunction during execution or cryptic
error messages during build. If version dependencies are specified explicitly, they can be checked
during build and the mismatches can be reported.

3.8.1. Version Information in TTCN-3 Files

TITAN allows test writers to specify that a certain TTCN-3 module requires a minimum version of
another TTCN-3 module or a minimum version of TITAN.

The Java side of the toolset provides the same features as the C side for TTCN-3 level checking of
consistency.

3.8.2. Consistency Check in the Generated Code

The java side offers different consistency checks compared to the C side, for the generated code.

When connecting to the Main Controller in parallel mode, TITAN verifies that the Main Controller
and the Java side binaries are of the exact same version of TITAN. This is done to ensure that, that
both sides use the same communication protocol.

What is not checked on the Java side or checked differently:

¥ There is no platform check as Java is platform independent.

¥ The Java runtime will check if it can execute the compiled code. Generally a Java runtime
should be able to execute any Java code built using an earlier Java version.

¥ During the compilation of the Java code, the Java compiler will check if it is able to compile all
parts of the code.

3.9. Negative Testing
Negative Testing is not yet supported on the Java side.

5

3.10. Differences between the Java side runtime, the C
side Load Test Runtime and the C side Function Test
Runtime
The Java side was based on the Load Test runtime of the C side. For now it has the same features
and limitations.

Please note, that based on the differences between Java and C++, the Java runtime should be treated
as its own version of the runtime, when preparing for future developments.

3.11. Profiling and code coverage
The Java side does not yet support profiling and code coverage measuring support directly.

For the time being we recommend using the tools built into Eclipse on the Java generated code (The
Java side projects also behave as normal Java projects for Eclipse tooling), or other tools provided
for Java.

6

Chapter 4. Supported ASN.1 Constructs and
Limitations
The following list contains the ASN.1 features that are not supported on the Java side, above the
limitations listed in [27] for the C side:

¥ BER Encoding and Decoding are not supported.

¥ subtypes are not checked.

¥ Charsymbols are not parsed

7

Chapter 5. Compiling TTCNÐ3 and ASN.1
Modules
You can translate your TTCNÐ3 and ASN.1 modules, located in TITAN Java projects, to Java source
code using the builder built into the Designer plugin.

This builder is automatically invoked, when the eclipseÕs build command is selected on a project.
When the Build Automatically option is selected in the Project menu, eclipse automatically builds
the project, in the background, when a file is changed.

The TITAN provided builder will use all TTCN-3 and ASN.1 files from all folders that are not
excluded. The .java files are generated into the java_src folder of the project into a package
generated from the name of the project in this format: "org.eclipse.titan." + projectname +
".generated".

The usual and recommended suffix is .ttcn for TTCNÐ3 and .asn for ASN.1 source files, but it is not
stringent [2: .ttcn3, or .asn1 suffixes are supported as well.] . For TTCNÐ3 and ASN.1 modules, the
names of the output files are the same as the name of the modules, except for the suffixes which
are .java .

NOTE In the ASN.1 module names hyphens are replaced by underscore character.

WARNING
If you have a modular test suite (the code located in several projects that
reference each other), to build a particular project you have to first build all
projects it references. This should be done automatically by eclipse.

5.1. Build Options
The options governing how a project is built can be set via right clicking on the project and
selecting Properties / TITAN Java Project Properties and in the window that appears on the
TITAN / Flags sub-page.

The following options are supported:

¥ Disable RAW encoding (-r)

Disables the generation of RAW encoder/decoder routines for all TTCNÐ3 types.

¥ Disable attribute validation (-0)

Disables the validation of "with" attributes.

WARNING
This option should only be used temporarily and only by people transferring
projects from other TTCN-3 tool vendors. As the attribute validation is turned
off, users will not be notified of invalid attributes, or errors within attributes.

¥ Add source line info for logging (-L)

8

Instructs the compiler to add source file and line number information into the generated code
to be included in the log during execution. This option is only a prerequisite for logging the
source code information. The run-time configuration file parameters OptionsSourceInfoFormat
and LogEntityName in [LOGGING] have also to be set appropriately. This feature can be useful for
finding the cause of dynamic test case errors in fresh TTCN3 code. Using this option enlarges the
size of the generated code a bit and reduces execution speed slightly; therefore it is not
recommended when the TTCN3 test suite is used for load generation.

¥ Allow 'omit' in template value lists (legacy behavior) (-M)

Enforces legacy behavior when matching the value omit . Allows the use of the value omit in
template lists and complemented template lists, giving the user another way to declare
templates that match omitted fields. If set, an omitted field will match a template list, if the
value omit appears in the list, and it will match a complemented template list, if omit is not in
the list (the ifpresent attribute can still be used for matching omitted fields). This also affects
the ispresent operation and the present template restriction accordingly.

¥ Force the generation of Seof types (-F)

Forces the code generator to generate the full classes for record of and set of types. When
turned off, and the of type of the set of/record of type is a basic type, the generated code will
only refer to pre-generated classes in the runtime library, saving compilation time.

5.2. Makefile Generator
The Java side of TITAN does not generate a Makefile as the build is governed by the built in tools of
Eclipse.

5.3. The Compilation Process for TTCNÐ3 and ASN.1
Modules
The Java side compilation is integrated into the Designer plug-in using itÕs syntactic and semantic
checking features.

During their run both the DesignerÕs analysis and Java code generatorÕs progress can eb followed in
the Progress view of eclipse.

During its run, the Designer might also report some of its activities on the TITAN Debug Console like
the following.

9

On-the-fly analyzation of project bughunt started
Ê **The project bughunt does not seem to need syntax check.
Ê ** Had to start checking at 0 modules.
Ê **On-the-fly semantic checking of projects (4 modules) took 1.04777E-4 seconds
Generating code for module `common'
Generating code for module `Bug'
re-Generated code for module `Bug'
Generating code for module `single_test'
Generating code for module `parallel_test'
Generated 4 Java files.
Generating code for single main
The whole analysis block took 0.0022510720000000002 seconds to complete

The activities leading to the compilation of the project can be grouped to 3 sets.

5.3.1. The initial analysis

First, the Designer reads the TTCNÐ3 and ASN.1 input files and performs syntax check according to
the BNF of TTCNÐ3 [1] (including the additions of [3]) or ASN.1 [4] , [7] , [8] , [9] . The syntax errors are
reported in the Problems view with the appropriate location information. Whenever it is possible,
the Designer tries to recover from syntax errors and continue the analysis in order to detect further
errors.

NOTE

Error recovery is not always successful and it might result in additional undesired
error messages when the parser gets out of synchronization. Therefore it is
recommended to study the first lines on the compilerÕs error listings because the
error messages at the end are not always relevant.

After the syntax check the Designer performs semantic analysis on TTCNÐ3 /ASN.1 module(s) and
verifies whether the various definitions and language elements are used in the appropriate way
according to the static semantics of TTCNÐ3 and ASN.1 languages. In addition to error messages the
Designer reports a warning when the corresponding definition is correct, but it might have
unwanted effects.

5.3.2. Subsequent analysis after change

Instead of repeating the analysis of the whole project always, the Designer is able to offer
incremental analysis. This means that after the first analysis, the semantic information gained from
the TTCN-3 and ASN.1 files is not deleted, but kept in the memory. So when users edit something in
the same project, the Designer only has to re-read that file, and repeat the semantic analysis on the
smallest set of semantic entities, that might be affected by the change. Reducing the length of
subsequent analysis duration times.

5.3.3. Actual Java code generation and Java compilation

After at least one analysis was done on a project, the Designer can generate a Java file, for each
module without errors, that contains the translated module. If the name of the input module is
MyModule (i.e.Êit begins with module MyModule), the name of the generated Java file will be

10

MyModule.java. Note that the name of the output file does NOT depend on the name of input file. In
ASN.1 module names the hyphens are converted to underscore characters (e.g.Êthe Java code for My-
Asn-Module will be placed into My_Asn_Module.java). The Java files are generated into the "java_src"
folder of the project into a package generated from the name of the project in this format:
"org.eclipse.titan." + projectname + ".generated".

By default, the compiler generates the Java code for the input modules:

¥ that do not have any errors inside them

¥ and were not yet analyzed or the last change might have affected them

¥ and either do not already have a Java file generated for them, or the content of the file needs to
be updated.

This sophisticated methods allows to reduce the length of the build after a change, by minimizing
the amount of code re-analyzed, re-generated and re-compiled by Java.

Once the DesignerÕs built in Java code generator finishes, the Java compiler of Eclipse takes the
generated Java code and compiles them into .class files. Which can be used for execution inside
eclipse, or can be exported as jar files, to be executed from the command line.

When the compiler translates an ASN.1 module, the different ASN.1 types are mapped to TTCNÐ3
types as described in the table below.

Table 12. Mapping of ASN.1 types to TTCNÐ3 types

ASN.1 TTCNÐ3

Simple types

NULL Ð *

BOOLEAN boolean

INTEGER integer

ENUMERATED enumerated

REAL float

BIT STRING bitstring

OCTET STRING octetstring

OBJECT IDENTIFIER objid

RELATIVE-OID objid

string charstring

string à universal charstring

string ¤ universal charstring

Compound types

CHOICE union

SEQUENCE record

SET set

SEQUENCE OF record of

11

ASN.1 TTCNÐ3

SET OF set of

* There is no corresponding TTCNÐ3 type
 IA5String, NumericString, PrintableString, VisibleString (ISO646String)
à GeneralString, GraphicString, TeletexString (T61String), VideotexString
¤ BMPString, UniversalString, UTF8String

5.4. Particularities of ASN.1 Modules
The Designer performs the same checks on ASN.1 modules as the compiler, but does not yet have
support for BER encoding/decoding.

5.5. Using Component Relation Constraints from
TTCNÐ3
The Designer performs the same checks on ASN.1 modules as the compiler, but does not yet have
support for BER encoding/decoding.

12

Chapter 6. The Run-time Configuration File
In general the Java side supports the exact same configuration file format and options in the same
way as the C side does, described in chapter 7 of [27] . There are some features, that are not yet
supported on the Java side:

¥ LoggerPlugins within the LOGGING section are not yet supported. The section is read correctly,
but such plugins are not loaded during runtime.

¥ EXTERNAL_COMMANDS section is not yet supported. The section is read correctly, but the
scripts set there will not be executed during runtime.

¥ In MAIN_CONTROLLER section the UnixSocketsEnabled feature is not supported. Java does not
seem to offer support for this feature.

¥ It is also not yet possible to configure the logging options dynamically.

On the C side, in the configuration file it is possible to use the %e Meta-character in the log fileÕs
name, to insert into it the name of the binary generating the log files. On the Java side this %e Meta-
character will represent the name of the project. This is because on the Java side the easiest and
fastest way to execute TITAN Java projects does not involve the generation of a "binary" to be
executed. As such in these situations the concept of the "name of the binary" does not exist.

13

Chapter 7. Code Coverage of TTCN-3 Modules
Measuring Code Coverage directly from TITAN is not yet supported on the Java side.

14

Chapter 8. The TTCN-3 Debugger
Debugging TTCN-3 directly from TITAN is not yet supported on the Java side.

15

Chapter 9. Test Ports
The Java source code generated by the Java code generator is protocol independent, that is, it does
not contain any device specific operations. To provide the connection between the executable test
suite and SUT, that is, the physical interface of the test equipment [3: The test equipment not
necessarily requires a special hardware; it can even be a simple PC with an Ethernet interface.] , a
so-called Test Port is needed.

The Test Port is a software library written in Java language, which is a part of the executable test
program. It maps the device specific operations to function calls specified in an API. This chapter
describes the Test Port API in details.

9.1. Generating the Skeleton
The functions of Test Ports must be written by the user who knows the interface between the
executable test suite and the test equipment. In order to make this development easier, Eclipse
features can be used to generate and update Test Port skeletons. A Test Port belongs to one certain
TTCNÐ3 port type, so the skeleton is generated based on port type definitions.

A Test Port consists of two parts. One part is generated automatically by the Java code generator,
and it is put into the generated Java code. The user has nothing to do with this part.

The other part is a Java class, which is written mainly by the user. This class can be found in a
separate Java file (their suffixes are .java). It is recommended to store this file in a folder separate
from the generated java files (for example called user_provided), so as it should not be deleted when
clearing the project. The name of the source files and the Java class have to be identical to the name
of the port type. And the Java class has to be located in the Java package whos name is generated as
org.eclipse.titan. + projectname + .user_provided . Please note that the name mapping rules
described in Mapping of Names and Identifiers also apply to these class and file names.

During the compilation, when the Java compiler encounters the usage of a Test Port that does not
yet has a user generated implementation, it will report an error in the generated code for missing
its import. Also offering Quick Fixes either by simply bringing the mouse cursor over the error
location, or by right clicking and selecting Quick Fix from the menu. Using the action that starts like
Create class 'MyMessagePort' in package É eclipse will automatically generate the class the user
needs. Once the class is create one should set its base class and right click in its body part selecting
the Source/Override\Implement MethodsÉ to automatically generate a skeleton for the needed
functions.

If the list of message types/signatures of a TTCN-3 port type changes, the list of the Test Port class
member functions also needs to change. Java will report build error like "The typeXY must
implement the inherited abstract methodÉ". In this case, the Override\Implement MethodsÉ action
should be invoked again, to create the skeletons of the newly required functions.

If you have defined a TTCNÐ3 port type that you intend to use for internal communication only
(that is, for sending and receiving messages between TTCNÐ3 test components), you do not need to
generate and compile an empty Test Port skeleton for that port type. Adding the attribute with
{extension "internal"} to the port type definition in the TTCNÐ3 module disables the generation

16

and use of a Test Port for the port type.

In the following we introduce two port type definitions: one for a message based and another one
for a procedure based port. In our further examples we will refer to the test port skeletons
generated according to these definitions given within the project called MyProject and module
called MyModule.

9.2. Message-based Example
The definition of MyMessagePort:

type port MyMessagePort message
{
Ê in octetstring;
Ê out integer;
Ê inout charstring;
};

That is, the types integer and charstring can be sent, and octetstring and charstring can be received
on port MyMessagePort.

The initial Test Port file (that is, MyMessagePort.java) will look as follows:

package org.eclipse.titan.MyProject.user_provided;

import org.eclipse.titan.MyProject.generated.MyModule.MyMessagePort_BASE;
import org.eclipse.titan.runtime.core.TitanCharString;
import org.eclipse.titan.runtime.core.TitanInteger;

public class MyMessagePort extends MyMessagePort_BASE {

Ê public MyMessagePort(final String name) {
Ê super(name);
Ê }

Ê @Override
Ê protected void outgoing_send(TitanInteger send_par) {
Ê // TODO Auto-generated method stub
Ê }

Ê @Override
Ê protected void outgoing_send(TitanCharString send_par) {
Ê // TODO Auto-generated method stub
Ê }
}

17

9.3. Procedure-based Example
The definition of MyProcedurePort in module MyModule:

type port MyProcedurePort procedure
{
Ê in inProc;
Ê out outProc;
Ê inout inoutProc;
};

The signature definitions are imported from a module called MyModule2, noblock is not used and
exceptions are used so that every member function of the port class is generated for this example.
If the keyword noblock is used the compiler will optimize code generation by not generating
outgoing reply, incoming reply member functions and their argument types. If the signature has no
exception outgoing raise, incoming exception member functions and related types will not be
generated.

The port type MyProcedurePort can handle call , getreply and catch operations referencing the
signatures outProc and inoutProc , and it can handle getcall , reply and raise operations referencing
the signatures inProc and inoutProc .

The initial Test Port file (that is, MyProcedurePort.java) will look as follows:

18

package org.eclipse.titan.MyProject.user_provided;

import org.eclipse.titan.MyProject.generated.MyModule.MyProcedurePort_BASE;
import org.eclipse.titan.MyProject.generated.MyModule2.inProc_reply;
import org.eclipse.titan.MyProject.generated.MyModule2.inoutProc_call;
import org.eclipse.titan.MyProject.generated.MyModule2.inoutProc_reply;
import org.eclipse.titan.MyProject.generated.MyModule2.outProc_call;

public class MyProcedurePort extends MyProcedurePort_BASE {

Ê public MyProcedurePort(final String name) {
Ê super(name);
Ê }

Ê @Override
Ê public void outgoing_call(outProc_call call_par) {
Ê // TODO Auto-generated method stub
Ê }

Ê @Override
Ê public void outgoing_call(inoutProc_call call_par) {
Ê // TODO Auto-generated method stub
Ê }

Ê @Override
Ê public void outgoing_reply(inProc_reply reply_par) {
Ê // TODO Auto-generated method stub
Ê }

Ê @Override
Ê public void outgoing_reply(inoutProc_reply reply_par) {
Ê // TODO Auto-generated method stub
Ê }
}

9.4. Test Port Functions
This section summarizes all possible member functions of the Test Port class. These functions have
an empty implementation in the base class of the Test Port.

The identical functions of both port types are:

¥ the constructor

¥ the parameter setting function

¥ the map and unmap function

¥ the start and stop function

¥ descriptor event and timeout handler(s)

19

¥ some additional functions and attributes

The functions above will be described using an example of message based ports (MyMessagePort, also
introducing the functions specific to message based port types). Using these functions is identical
(or very similar) in procedure based Test Ports.

Functions specific to message based ports:

¥ send functions: outgoing send

¥ incoming functions: incoming message

¥ Functions specific to procedure based ports:

¥ outgoing functions: outgoing_call, outgoing_reply, outgoing_raise

¥ incoming functions: incoming_call, incoming_reply, incoming_exception

Both test port types can use the same logging and error handling mechanism, and the handling of
incoming operations on port MyProcedurePort is similar to receiving messages on port MyMessagePort
(regarding the event handler).

NOTE

The easiest way to discover what functions can be overwritten and to generate their
skeleton is by using the earlier described Override\Implement MethodsÉ
functionality of eclipse. That functionality automatically list all functions from the
class generated for the given testport and the its parent classes, that can be
overwritten.

NOTE

Please note, that in Java functions by default inherit the documentation/comments
from the function they overwrite. So while the functions just inserted to overwrite
functions from the base class might not appear to have a comment, in eclipse
moving the cursor over their name will reveal their actual comment.

9.4.1. Constructor

NOTE On the Java side Test Ports do not have destructors.

The Test Port class belongs to a TTCNÐ3 port type, and its instances implement the functions of the
port instances. That is, each Test Port instance belongs to the port of a TTCNÐ3 test component. The
number of TTCNÐ3 component types, port types and port instances is not limited; you may have
several Test Port classes and several instances of a given Test Port class in one test suite.

The Test Port instances are global and static objects from the point of view of the Java code. This
means, their constructor is called before the test execution (that is, before the main function starts).
They are also stored as threadlocal to be only accessible by the thread (Parallel Test Component)
they belong to. The name of a Test Port object is composed of the name of the corresponding
component type and the name of the port instance within the component type.

In case of parallel test execution, each TTCNÐ3 test component thread has its own Test Port
instances. Of course, only the Test Ports of the active component type are used, the member
functions of other inactive Test Port instances (except constructor) shall never be called. All Test

20

Port instances should be handled as being static, their constructor is called only once, at the time
their component is created. The test component threads (that is, the child threads of Host
Controller) will have to create/initialize their own Test Port instances.

The Test Port class is derived from an abstract base class which can be found in the generated code.
The base class implements, for instance, the queue of incoming messages.

The constructor takes one parameter containing the name of the port instance in a String. This
string shall be passed further to the constructor of the base class as it can be found in the skeleton
code. The default argument for the test port name is a null pointer, which is used when the test port
object is a member of a port array.

WARNING

In case of port arrays the name of the test port is set after the constructor is
completed. So the name of the test port should not be used in the constructor.
The port name is always set correctly when any other member function is
called.

9.4.2. Parameter Setting Function

Test Port parameters shall contain information which is independent from the TTCN-3 test suite.
These values shall not be used in the test suite at all. You can define them as TTCNÐ3 constants or
module parameters, but these definitions are useless and redundant, and they must always be
present when the Test Port is used.

For instance, using Test Port parameters can be used to convey configuration data (that is, some
options or extra information that is necessary for correct operation) or lower protocol layer
addresses (for example, IP addresses).

Test Port parameters shall be specified by the user of executable tests in the [TESTPORT_PARAMETERS]
section of the run-time configuration file (see section [TESTPORT_PARAMETERS] in ProgrammerÕs
Technical Reference). The parameters are maintained for each test port instance separately;
wildcards can be used as well. In the latter case the parameter is passed to all Test Port matching
the wildcard.

Each Test Port parameter must have a name, which must be unique within the Test Port only. The
name must be a valid identifier, that is, it must begin with a letter and must contain
alphanumerical characters only.

All Test Port parameter values are interpreted by the test executor as character strings. Quotation
marks must be used when specifying the parameter values in the configuration file. The
interpretation of parameter values is up to you: you can use some of them as symbolic values,
numbers, IP addresses or anything that you want.

Before the test execution begins, all parameters belonging to the Test Port are passed to the Test
Port by the runtime environment of the test executor using the function set_parameter. The default
implementation of this function does nothing and ignores all parameters.

Each parameter is passed to the Test Port one-by-one separately [4: If the same parameter of the
same port instance is specified several times in the configuration file, the function set_parameter

21

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

will also be called several times.] , the two arguments of set_parameter contain the name and value
of the corresponding parameter, respectively, in Strings.

It is warmly recommended that the Test Port parameter handling functions be fool-proof. For
instance, the Test Port should produce a proper error message (for example by calling TtcnError) if
a mandatory parameter is missing instead of causing unreliable behavior later. Repeated setting of
the same parameter should produce warnings for the user (for example by using the function
TtcnError.TtcnWarning) and not memory leaks.

NOTE

On the MTC, in both single and parallel modes, the handling of Test Port parameters
is a bit different from that on PTCs. The parameters are passed only to active ports,
but the component type of MTC (thus the set of active ports) depends on the runs on
clause of the test case that is currently being executed. It would be difficult for the
runtime environment to check at the beginning of each test case whether the
corresponding MTC component type has already been active during a previous test
case run. Therefore all Test Port parameters belonging to the active ports of the
MTC are passed to the set_parameter function at the beginning of every test case.
The Test Ports of MTC shall be prepared to receive the same parameters several
times (with the same values, of course) if more than one test case is being executed.

If system related Test Port parameters are used in the run-time configuration file (that is, the
keyword system is used as component identifier), the parameters are passed to your Test Port
during the execution of TTCNÐ3 map operations, but before calling your user_map function. Please
note that in this case the port identifier of the configuration file refers to the port of the test system
interface that your port is mapped to and not the name of your TTCNÐ3 port.

The name and exact meaning of all supported parameters must be specified in the user
documentation of the Test Port.

9.4.3. Map and Unmap Functions

The run-time environment of the TTCNÐ3 executor knows nothing about the communication
towards SUT, thus, it is the userÕs responsibility to establish and terminate the connection with SUT.
The TTCNÐ3 language uses two operations to control these connections, map and unmap.

For this purpose, the Test Port class provides two member functions, user_map and user_unmap. These
functions are called by the test executor environment when performing TTCNÐ3 map and unmap
operations, respectively.

The map and unmap operations take two pairs of component references and ports as arguments.
These operations are correct only if one of the arguments refer to a port of a TTCNÐ3 test
component while the other port corresponds to SUT. This aspect of correctness is verified by the
run-time environment, but the existence of a system port is not checked.

The port names of the system are converted to Strings and passed to functions user_map and
user_unmap as parameters. Unlike other identifiers, the underscore characters in these port names
are not translated.

22

NOTE

in TTCNÐ3 it is not allowed to map a test component port to several system ports at
the same time. The run-time environment, however, is not so strict and allows this
to handle transient states during configuration changes. In this case messages can
not be sent to SUT even with explicit addressing, but the reception of messages is
permitted. When putting messages into the input queue of the port, it is not
important for the test executor (even for the TTCNÐ3 language) which port of the
system the message is received from.

The execution of TTCNÐ3 test component that requested the mapping or unmapping is suspended
until your user_map or user_unmap functions finish. Therefore it is not allowed to block unnecessarily
the test execution within these functions.

When the Test Port detects an error situation during the establishment or termination of the
physical connection towards the SUT, the function TTCN_error shall be used to indicate the failure. If
the error occurs within user_map the run-time environment will assume that the connection with
SUT is not established thus it will not call user_unmap to destroy the mapping during the error
recovery procedure. If user_map fails, it is the Test Port writerÕs responsibility to release all allocated
resources and bring the object variables into a stable state before calling TtcnError . Within
user_unmap the errors should be handled in a more robust way. After a minor failure it is better to
issue a warning and continue the connection termination instead of panicking. TtcnError shall be
called only to indicate critical errors. If user_unmap is interrupted with an error the run-time
environment assumes that the mapping has been terminated, that is, user_unmap will not be called
again.

NOTE
if either user_map or user_unmap fails, the error is indicated on the initiator test
component as well; that is, the respective map or unmap operation will also fail and
error recovery procedure will start on that component.

Parameters of the Map and Unmap Functions

Parameters can be sent to the user_map and user_unmap functions from TTCN-3 code using the param
clause of the map and unmap operations.

The user_map and user_unmap functions have a parameter of type Map_Params, which contains the
string representations of the in and inout parameters of the map/unmap operation. The string
representations of out parameters are empty strings (as these are considered as being unbound at the
beginning of the map/unmap operation). After the user_map or user_unmap function ends and the
mapping/unmapping is concluded, the final values (string representations) of out and inout
parameters in the Map_Params object are sent back to the mapping/unmapping requestor.

The following member functions can be used to obtain or set data in the Map_Params object:

public int get_nof_params()

Returns the number of parameters in the object. This will either be zero (if the map or unmap
operation had no param clause) or the number of parameters specified in the system port type
definitionÕs map param or unmap param clause.

23

public TitanCharString get_param(final int index)

Returns the string representation of the parameter at index p_index. This method shall be used to
retrieve the values of in and inout parameters. The parameter indices start at 0. The order of the
parameters is the same as their order of declaration. Default values of parameters are
automatically set by the runtime environment before the user_map/user_unmap call. The string
representations retrieved with this function can be converted back to the parameterÕs TTCN-3 type
with the predefined function string_to_ttcn .

public void set_param(final int index, final TitanCharString param)

Sets the string representation of the parameter at index p_index to the string p_param. This method
shall be used to set the final values of out and inout parameters. The string representation of a
TTCN-3 value can be obtained using the predefined function ttcn_to_string . If the final value of an
out or inout parameter is an empty string, then the variable used as parameter will remain
unchanged. Otherwise its new value will be calculated by applying string_to_ttcn on the string
value set in the user_map or user_unmap function (this could cause dynamic test case errors if the
string representation is invalid).

Usage example:

Port type:

type port MyPort message {
Ê ...
Ê map param(in MyInParType in_par, inout MyInOutParType inout_par, out MyOutParType
out_par)
}

user_map function in port implementation:

24

@Override
protected void user_map(final String system_port, final Map_Params params) {
Ê if (params.get_nof_params() == 0) {
Ê // there were no map parameters

Ê // do mapping
Ê ...
Ê } else {
Ê // there were map parameters

Ê // extract 'in' and 'out' parameters
Ê MyInParType in_par = new MyInParType();
Ê TitanCharString.string_to_ttcn(params.get_param(0), in_par);
Ê MyInOutParType inout_par = new MyInOutParType();
Ê TitanCharString.string_to_ttcn(params.get_param(1), inout_par);
Ê MyOutParType out_par = new MyOutParType(); // remains unbound

Ê // do mapping
Ê ...

Ê // update 'out' and 'inout' parameters
Ê params.set_param(1, TitanCharString.ttcn_to_string(inout_par));
Ê params.set_param(2, TitanCharString.ttcn_to_string(out_par));
Ê }
}

9.4.4. Start and Stop Functions

The Test Port class has two member functions: user_start and user_stop . These functions are called
when executing port start and port stop operations, respectively. The functions have no
parameters and return types.

These functions are called through a stub in the base class, which registers the current state of the
port (whether it is started or not). So user_start will never be called twice without calling user_stop
or vice versa.

All ports of test components are started implicitly immediately after creation. Operations put in a
user_start function must not be blocking the execution for a longer period. This not only hangs the
new PTC but the also component that performed the create operation (usually the MTC). All ports
are stopped at the end of test cases or at PTC termination, even if stop statements are missing.

In functions user_start and user_stop the device should be initialized or shut down towards SUT
(that is, the communications socket). Also the event handler should be installed or uninstalled (see
later).

9.4.5. Outgoing Operations

Outgoing operations are send (specific to message based ports); call , reply , and raise (specific to
procedure based ports).

25

Send Functions

The Test Port class has an overloaded function called outgoing_send for each outgoing message type.
This function will be called when a message is sent on the port and it should be routed to the
system (that is, SUT) according to the addressing semantics [5: That is, the port has exactly one
mapping and either the port has no connections or the message is explicitly addressed by a send (
É) to system statement.] of TTCNÐ3. The messages (implicitly or explicitly) addressed to other test
components are handled inside the test executor; the Test Ports have nothing to do with them. The
function outgoing_send will be also called if the port has neither connections nor mappings, but a
message is sent on it.

The only parameter of outgoing_send contains a read-only reference to the message in the internal
data representation format of the test executor. The access methods for internal data types are
described in Predefined TTCNÐ3 Data Types . The test port writer should encode and send the
message towards SUT. For information on how to use the standard encoding functions like RAW,
please consult the earlier chapters of this document. Sending a message on a not started port causes
a dynamic test case error. In this case outgoing_send will not be called.

Call, Reply and Raise Functions

The procedure based Test Port class has overloaded functions called outgoing_call , outgoing_reply
and outgoing_raise for each call , reply and raise operations, respectively. One of these functions
will be called when a port-operation is addressing the system (that is, SUT using the to system
statement).

The only parameter of these functions is an internal representation of the signature parameters
(and possibly its return value) or the exceptions it may raise. The signature classes are described in
Using the Signature Classes .

9.4.6. Incoming Operations

Incoming operations are receive for incoming messages (specific to message based ports); call ,
reply and raise for signatures (specific to procedure based ports).

Descriptor Event and Timeout Handlers

The handling of incoming messages (or operations) is more difficult than sending. The executable
test program has two states. In the first state, it executes the operations one by one as specified in
the test suite (for example, it evaluates expressions, calls functions, sends messages, etc.). In the
other state it waits for the response from SUT or for a timer to expire. This happens when the
execution reaches a blocking statement, that is, one of a stand-alone receive , done, timeout
statements or an alt construct.

After reaching a blocking statement, the test executor evaluates the current snapshot of its timer
and port queues and tries to match it with the reached statements and templates. If the matching
fails, the executor sleeps until something happens to its timers or ports. After waking up, it re-
evaluates its snapshot and tries to match it again. The last two steps are repeated until the executor
finds the first matching statement. If the test executor realizes that its snapshot can never match
the reached TTCNÐ3 statements, it causes a dynamic test case error. This mechanism prevents it
from infinite blocking.

26

The test executor handles its timers itself, but it does not know anything about the communication
with SUT. So each Test Port instance should inform the snapshot handler of the executor what kind
of event the Test Port is waiting for. The event can be either the reception of data on one or more
socket channels or a timeout (when polling is used) or both of them.

When the test executor reaches a blocking statement and any condition Ð for which the Test Port
waits Ð is fulfilled, the event handler will be called. First one has to get the incoming message or
operation from the operating system. After that, one has to decode it (and possibly decide its type).
Finally, if the internal data structure is built, one has to put it into the queue of the port. This can be
done using the member function incoming_message if it is a message, and using incoming_call ,
incoming_reply or incoming_exception if it is an operation.

The execution must not be blocked in event handler functions; these must return immediately
when the message or operation processing is ready. In other words, always use non-blocking calls.
In the case when the messages are fragmented (for instance, when testing TCP based application
layer protocols, such as HTTP), intermediate buffering should be performed in the Test Port class.

Event and timeout handling interface

To be notified about available events the Handle_Event function has to be implemented.

public void Handle_Event(final SelectableChannel channel, final boolean is_readable,
final boolean is_writeable);

Using Handle_Event allows receiving all events of a descriptor in one function call.

The first parameter in all of these functions is the selectable channel. The second is true if the
channel is readable. The third is true if it is writeable.

You can install or uninstall the event handler by calling the following inherited member functions:

protected void Install_Handler(final Set<SelectableChannel> read_channels, final
Set<SelectableChannel> write_channels, final double call_interval) throws IOException;
protected void Uninstall_Handler() throws IOException;

Install_Handler installs the event handler according to its parameters. It takes three arguments,
two sets of SelectableChannels and a timeout value. Some of the parameters can be ignored, but
ignoring all at the same time is not permitted.

read_channels is the set of SelectabeChannel to register the handler for reading. If null the handler
is not registered for any channel to handle reading. write_channels is the set of SelectabeChannel to
register the handler for writing. If null the handler is not registered for any channel to handle
writing.

The call interval value is measured in seconds. It means that the event handler function will be
called when the time elapsed since its last call reaches the given value. This parameter is ignored
when its value is set to zero or negative.

27

If you want to change your event handling parameters, you may simply call the function
Install_Handler again (calling of Uninstall_Handler is not necessary).

Uninstall_Handler will uninstall your previously installed event handler. The stop port operation
also uninstalls the event handler automatically. The event handler may be installed or uninstalled
in any Test Port member function, even in the event handler itself.

Receiving messages

The member function incoming_message of message based ports can be used to put an incoming
message in the queue of the port. There are different functions for each incoming message type.
These functions are inherited from the base class. The received messages are logged when they are
put into the queue and not when they are processed by the test suite [6: Note that if the port has
connections as well, the messages coming from other test components will also be inserted into the
same queue independently from the event handler.] .

In our example the class MyMessagePort_BASE has the following member functions:

protected void incoming_message(final TitanOctetString incoming_par);
protected void incoming_message(final TitanCharString incoming_par);

Receiving calls, replies and exceptions

Receiving operations on procedure based ports is similar to receiving messages on message based
ports. The difference is that there are different overloaded incoming functions for call, reply and
raise operations called incoming_call , incoming_reply and incoming_exception , respectively. The
event handler (when called) must recognize the type of operation on receiving and call one of these
functions accordingly with one of the internal representations of the signature (see Additional Non-
Standard Functions).

In the example [7: In the example the signatures were defined in a different TTCNÐ3 module named
MyModule2, as a consequence all types defined in that module must be prefixed with the Java
name of that module and its class be imported.] the class MyProcedurePort_BASE has the following
member functions for incoming operations:

protected void incoming_call(final MyModule2.inProc_call incoming_par);
protected void incoming_call(final MyModule2.inoutProc_call incoming_par);
protected void incoming_reply(final MyModule2.outProc_reply incoming_par);
protected void incoming_reply(final MyModule2.inoutProc_reply incoming_par);
protected void incoming_exception(final MyModule2.outProc_exception incoming_par);
protected void incoming_exception(final MyModule2.inoutProc_exception incoming_par);

For example, if the event handler receives a call operation that refers to the signature called
inoutProc , it has to fill the parameters of an instance of the class inoutProc_call with the received
data. Then it has to call the function incoming_call with this object to place the operation into the
queue of the port.

The following table shows the relation between the direction of the message type or signature in

28

12-mapping_ttcn3_data_types_to_java_constructs..pdf#additional-non-standard-functions
12-mapping_ttcn3_data_types_to_java_constructs..pdf#additional-non-standard-functions

the port type definition and the incoming/outgoing functions that can be used. MyPort in the table
header refers to MyMessagePort or MyProcedurePort in the example depending on the type of the port
(message based or procedure based).

Table 1. Outgoing and incoming operations

MyPort.outgoing_ MyPort_BASE.incoming_

send call reply raise message call reply exceptio
n

message
type

in ! ! ! ! " ! ! !

out " ! ! ! ! ! ! !

inout " ! ! ! " ! ! !

signatur
e

in ! ! " " ! " ! !

out ! " ! ! ! ! " "

inout ! " " " ! " " "

" supported

! not supported

9.4.7. Additional Functions and Attributes

Any kind of attributes or member functions may be added to the Test Port. A selectable channel,
which you communicate on, is almost always necessary. Names not interfering with the identifiers
generated by the Java code generator can be used in the java file (for example, the names
containing one underscore character). Avoid using static variables because you may get confused
when more than one instances of the Test Port run simultaneously. Any kind of software libraries
may be used in the Test Port as well.

In addition, the following protected attributes of ancestor classes are available:

Table 2. Protected attributes

Name Type Meaning

is_active
boolean

Indicates whether the Test Port
is active.

is_started
boolean

Indicates whether the Test Port
is started.

is_halted
boolean

Indicates whether the Test Port
is halted.

port_name
String

Contains the name of the Test
Port instance.

Underscore characters are not duplicated in port_name. In case of port array member instances the
name string looks like this: "Myport_array[5]" .

29

9.5. Support of address Type
The special user-defined TTCNÐ3 type address can be used for addressing entities inside the SUT on
ports mapped to the system component. Since the majority of Test Ports does not need TTCNÐ3
addressing and in order to keep the Test Port API backward compatible the support of address type
is disabled by default. To enable addressing on a particular port type the extension attribute
"address" must be added to the TTCNÐ3 port type definition. In addition to component references
this extension will allow the usage of address values or variables in the to or from clauses and sender
redirects of port operations.

In order to use addressing, a type named address shall be defined in the same TTCNÐ3 module as
the corresponding port type. Address types defined in other modules of the test suite do not affect
the operation of the port type. It is possible to link several Test Ports that use different types for
addressing SUT into the same executable test suite.

Test Ports that support SUT addressing have a slightly different API, which is considered when
generating Test Port skeleton. This section summarizes only the differences from the normal API.

In the communication operations the test port author is responsible for handling the address
information associated with the message or the operation. In case of an incoming message or
operation the value of the received address will be stored in the port queue together with the
received message or operation.

The generated code for the port skeleton of message based ports will be the same, except
outgoing_send member function, which has an extra parameter pointing to an TitanAddress value.
With the example given in Test Port Functions :

void outgoing_send(final TitanInteger send_par, final TitanAddress
destination_address);
void outgoing_send(final TitanCharString send_par, final TitanAddress
destination_address);

NOTE
when the type named address is defined as a synonym of an other type, these
functions could also report that type to be the type of the destination_address
formal parameter.

If an address value was specified in the to clause of the corresponding TTCNÐ3 send operation the
second argument of outgoing_send points to that value. Otherwise it is set to the NULL pointer. The
Test Port code shall be prepared to handle both cases.

The outgoing operations of procedure based ports are also generated in the same way if the address
extension is specified. These functions will also have an extra parameter. Based on our example,
these will have the following form:

30

void outgoing_call(final MyModule2.outProc_call call_par, final TitanAddress
destination_address);
void outgoing_call(final MyModule2.inoutProc_call call_par, final TitanAddress
destination_address);
void outgoing_reply(final MyModule2.inProc_reply reply_par, final TitanAddress
destination_address);
void outgoing_reply(final MyModule2.inoutProc_reply reply_par, final TitanAddress
destination_address);
void outgoing_raise(final MyModule2.inProc_exception raise_exception, final
TitanAddress destination_address);
void outgoing_raise(final MyModule2.inoutProc_exception raise_exception, final
TitanAddress destination_address);

The other difference is in the incoming_message member function of class MyMessagePort_BASE, and in
the incoming member functions of class MyProcedurePort_BASE. These have an extra parameter,
which is a pointer to an TitanAddress value. The version of the function that does not have this
formal parameter, will call this function with a null value passed as the sender_address. In our
example of MyMessagePort_BASE:

void incoming_call(final MyModule2.inProc_call incoming_par, final int
sender_component, final TitanAddress sender_address);
void incoming_call(final MyModule2.inoutProc_call incoming_par, final int
sender_component, final TitanAddress sender_address);
void incoming_reply(final MyModule2.outProc_reply incoming_par, final int
sender_component, final TitanAddress sender_address)
void incoming_reply(final MyModule2.inoutProc_reply incoming_par, final int
sender_component, final TitanAddress sender_address)
void incoming_exception(final MyModule2.outProc_exception incoming_par, final int
sender_component, final TitanAddress sender_address)
void incoming_exception(final MyModule2.inoutProc_exception incoming_par, final int
sender_component, final TitanAddress sender_address)

If the event handler of the Test Port can determine the source address where the message or the
operation is coming from, it shall pass a pointer to the incoming function, which points to a
variable that stores the address value. The given address value is not modified by the run-time
environment and a copy of it is created when the message or the operation is appended to the port
queue. If the event handler is unable to determine the sender address the default null value shall
be passed as the argument.

The address value stored in the port queue is used in receive , trigger , getcall , getreply , catch and
check port operations: it is matched with the from clause and/or stored into the variable given in the
sender redirect. If the receiving operation wants to use the address information of the first element
in the port queue, but the Test Port has not supplied it a dynamic testcase error will occur.

9.6. Provider Port Types
Test Ports that belong to port types marked with extension attribute "provider" have a slightly

31

different API. Such port types are used to realize dual-faced ports, the details of which can be found
in section "Dual-faced ports" in the ProgrammerÕs Technical Reference .

The purpose of this API is to allow the re-use of the Test Port class with other port types marked
with attribute user or with ports with translation capability (Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Configuration
and Deployment Support). The user port types may have different lists of incoming and outgoing
message types. The transformations between incoming and outgoing messages, which are specified
entirely by the attribute of the user port type, are done independently of the Test Port. The Test Port
needs to support the sending and reception of message types that are listed in the provider port
type.

The provider port can be accessed through the port which maps to the port with provider attribute.
The get_provider_port() is a member function of the TitanPort class:

TitanPort get_provider_port();

This function is useful when a reference to the provider type is needed. It returns the provider port
type for user ports and ports with translation capability. Otherwise returns null. The function
causes dynamic testcase error when the port has more than one mapping, or the port has both
mappings and connections. The functionÕs return value must be manually cast to the correct
provider port type.

This section summarizes only the differences from the normal Test Port API:

¥ The name of the Test Port class is suffixed with the string _PROVIDER (for example
MyMessagePort_PROVIDER instead of MyMessagePort).

¥ The base class of the Test Port is class TitanPort , which is part of the Base Library. Please note
that normal Test Ports are also derived from class TitanPort, but indirectly through an
intermediate class with suffix _BASE.

¥ The member functions that handle incoming messages and procedure-based operations (that is
incoming_message, incoming_call , incoming_reply and incoming_exception) must be defined as
override-able functions. These functions will be implemented in various descendant classes
differently.

¥ The member functions of the Test Port may refer to Java classes that are generated from user-
defined message types and signatures.

The following example shows the skeleton of a provider port type Test Port.

Port type definition in TTCNÐ3 :

type port MyProviderPort mixed {
Ê inout MyMessage, MySignature;
} with { extension "provider" }

Source file MyProviderPort_PROVIDER.java:

32

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf

package org.eclipse.titan.MyProject.user_provided;

import java.nio.channels.SelectableChannel;

import org.eclipse.titan.MyProject.generated.MyModule.MyMessage;
import org.eclipse.titan.MyProject.generated.MyModule.MySignature_call;
import org.eclipse.titan.MyProject.generated.MyModule.MySignature_exception;
import org.eclipse.titan.MyProject.generated.MyModule.MySignature_reply;
import org.eclipse.titan.runtime.core.TitanPort;

public class MyProviderPort_PROVIDER extends TitanPort {

Ê public MyProviderPort_PROVIDER() {
Ê super();
Ê }

Ê public MyProviderPort_PROVIDER(final String name) {
Ê super(name);
Ê }

Ê @Override
Ê public void set_parameter(final String parameter_name, final String
parameter_value) {
Ê }

Ê @Override
Ê public void Handle_Event(final SelectableChannel channel, final boolean
is_readable,
Ê final boolean is_writeable) {
Ê }

Ê @Override
Ê protected void user_map(final String system_port, final Map_Params params) {
Ê }

Ê @Override
Ê protected void user_unmap(final String system_port, final Map_Params params) {
Ê }

Ê @Override
Ê protected void user_start() {
Ê }

Ê @Override
Ê protected void user_stop() {
Ê }

Ê public void outgoing_send(final MyMessage send_par) {
Ê }
Ê public void outgoing_call(final MySignature_call call_par) {
Ê }

33

Ê public void outgoing_reply(final MySignature_reply reply_par) {
Ê }
Ê public void outgoing_raise(final MySignature_exception raise_Exception) {
Ê }
}

9.7. Tips and Tricks
The following sections deal with logging and error handling in Test Ports.

9.7.1. Logging

Test Ports may record important events in the Test Executor log during sending/receiving or
encoding/decoding messages. Such log messages are also good for debugging fresh code.

The Test Port member functions may call the functions of class TTCN_Logger. These functions are
detailed in Logging in Test Ports or External Functions .

If there are many points in the Test Port code that want to log something, it can be a good practice
to write a common log function in the Test Port class. We show here an example where the calling
of log uses JavaÕs MessageFormat.format to create a custom message, and inside the log function
TTCN_Logger.log_event demonstrates logging using the standard C function printf style and
forwards the message to the Test ExecutorÕs logger:

private void value_logging(final TitanInteger i) {
Ê log(MessageFormat.format("The value of i : {0}.", i.get_int()));
}

private void log(final String content) {
Ê TTCN_Logger.begin_event(Severity.DEBUG_USER);
Ê TTCN_Logger.log_event("Example Test Port (%s): ", get_name());
Ê TTCN_Logger.log_event_str(content);
Ê TTCN_Logger.end_event();
}

9.7.2. Error Handling

None of the Test Port member functions have return value like a status code. If a function returns
normally, the run-time environment assumes that it has performed its task successfully. The
handling of run-time errors is done using Java exceptions. This simplifies the program code
because the return values do not have to be checked everywhere and dynamically created complex
error messages can be used if necessary.

If any kind of fatal error is encountered anywhere in the Test Port, an exception of type TtcnError
should be thrown:

34

13-tips_&_troubleshooting.pdf#logging-in-test-ports-or-external-functions

throw new TtcnError(errorMessage);

Its parameter should contain the description of the error in a String. The exception is usually
caught at the end of the test case or PTC function that is being executed. In case of error, the verdict
of the component is set to error and the execution of the test case or PTC function terminates
immediately.

The error string is written into the log file by TtcnError immediately. Such type of exception should
never be caught or thrown directly. If you want to implement your own error handling and error
recovery routines you had better use your own classes as exceptions.

If you write your own error reporting function you can add automatically the name of the port
instance to all of your error messages. This makes the fault analysis for the end-users easier. In the
following example the error message will occupy two consecutive lines in the log since we can pass
only one format string to TtcnError .

private void error(final String content) {
Ê TTCN_Logger.begin_event(Severity.ERROR_UNQUALIFIED);
Ê TTCN_Logger.log_event("Example Test Port (%s): ", get_name());
Ê TTCN_Logger.log_event_str(content);
Ê TTCN_Logger.end_event();
Ê throw new TtcnError(MessageFormat.format("Fatal error in Example Test Port {0}
(see above).", get_name()));
Ê }

There is another function for denoting warnings (that is, events that are not so critical) with the
same parameter list as TtcnError:

void TtcnError.TtcnWarning(warningMessage);

This function puts an entry in the executorÕs log with severity TTCN_WARNING. In contrast to TtcnError ,
after logging the given message TtcnWarning returns and your test port can continue running.

9.8. Setting timestamps
In order to use the timestamp redirects (! timestamp) described in chapter 5 of the TTCN-3
standard extension TTCN-3 Performance and Real Time Testing (ETSI ES 202 782 V1.3.1, [16]) the test
port writer needs to add extra code to set the timestamps for the incoming and outgoing port
operations of each port with the realtime clause.

9.8.1. Incoming operations

The timestamps of incoming port operations (receive , trigger , getcall , getreply , catch and check)
need to be set when the incoming message or procedure is added to the queue.

The member functions incoming_message, incoming_call , incoming_reply and incoming_exception

35

(which add the message/procedure to the queue) have an optional TitanFloat parameter called
timestamp, if the test port was declared with the realtime clause.

The value given to this parameter will be the one stored in the variable referenced in the
timestamp redirect, if the operation has a timestamp redirect (otherwise the value is ignored).

It is recommended that this parameter be set to the current test system time, which can be queried
with TTCN_Runtime.now();, or to a float variable that was set to the current test system time earlier in
the function.

Examples:

incoming_message(my_message, TTCN_Runtime.now());

TitanFloat reply_time = TTCN_Runtime.now();

...

incoming_reply(my_reply, reply_time);

9.8.2. Outgoing operations

The timestamps of outgoing port operations (send, call , reply , raise) need to be set in the member
functions outgoing_send, outgoing_call , outgoing_reply and outgoing_raise .

These functions have a TitanFloat pointer parameter called timestamp_redirect , if the test port was
declared with the realtime clause.

The value pointed to by this parameter will be the one stored in the variable referenced in the
timestamp redirect, if the operation has a timestamp redirect.

If it does not have a timestamp redirect, then this value parameter will be null. Because of this, the
parameter must always have a null check before it is assigned a value.

It is recommended that the value pointed to by the parameter be set to the current test system time,
which can be queried with TTCN_Runtime.now().

Example:

if (timestamp_redirect != null) {
Ê timestamp_redirect.operator_assign(TTCN_Runtime.now());
}

Note: Because of this extra parameter, adding or removing the realtime clause from a port will
cause already-written Java code for the port to no longer compile. In these cases the new
parameters must be manually added or removed from the mentioned functions.

36

Chapter 10. Logger Plug-ins
The Logger Plug-ins feature is not yet supported on the Java side.

37

Chapter 11. Encoding and Decoding
TITAN is equipped with several standard encoding/decoding mechanisms. A part of these functions
reside in the core library, but the type-dependent part must be generated by the Java code
generator. In order to reduce the code size and compilation time, the code generation for encoding
functions (separately for different encoders) can be switched off if they are not needed as described
in Build Options .

To make it easier to use the encoding features, a unified common API was developed. With help of
this API the behaviour of the test executor in different error situations can be set during coding.
There is also a common buffer class. The details of the above mentioned API as well as the specific
features of the certain encoders are explained in the following sections.

11.1. The Common API
The common API for encoders consists of three main parts:

¥ A dummy class named TTCN_EncDec which encapsulates functions regarding error handling.

¥ A buffer class named TTCN_Buffer which is used by the encoders to put data in, decoders to get
data from.

¥ The functions needed to encode and decode values.

11.1.1. TTCN_EncDec

TTCN_EncDec implements error handling functions.

Setting Error Behavior

There are lot of error situations during encoding and decoding. The coding functions can be told
what to do if an error arises. To set the behaviour of test executor in a certain error situation the
following function is to be invoked from the TTCN_EncDec class:

static void set_error_behavior(final error_type p_et, final error_behavior_type p_eb);

WARNING
As error_type and error_behavior_type are enums defined in TTCN_EncDec
class, they have to prefixed with the class name (that is TTCN_EncDec.). An
example usage:

TTCN_EncDec.set_error_behavior(TTCN_EncDec.error_type.ET_ALL,
TTCN_EncDec.error_behavior_type.EB_DEFAULT);

The possible values of error_type are detailed in the sections describing the different codings. Some
common error types are shown in the table below:

Table 3. Common error types

38

ET_UNDEF Undefined/unknown error.

ET_UNBOUND Encoding of an unbound value.

ET_REPR Representation error (for example, internal representation of
integral numbers).

ET_ENC_ENUM Encoding of an unknown enumerated value.

ET_DEC_ENUM Decoding of an unknown enumerated value.

ET_INCOMPL_MSG Decode error: incomplete message.

ET_INVAL MSG Decode error: invalid message.

ET_CONSTRAINT The value breaks some constraint.

ET_INTERNAL Internal error. Error behaviour cannot be set for this.

ET_ALL All error type. Usable only when setting error behaviour.

ET_NONE No error.

The possible values of error_behavior_type are shown in the table below:

Table 4. Possible values of error_behavior_t

EB_DEFAULT Sets the default error behaviour for the selected error type.

EB_ERROR Raises an error if the selected error type occurs.

EB_WARNING Gives a warning message but tries to continue the operation.

EB_IGNORE Like warning but without the message.

Getting Error Behavior

There are two functions: one for getting the current setting and one for getting the default setting
for a particular error situation.

static error_behavior_type get_error_behavior(final error_type p_et)
static error_behavior_type get_default_error_behavior(final error_type p_et)

The using of these functions are straightforward: giving a particular error_type the function
returns the current or default error_behavior_type for that error situation, respectively.

Checking if an Error Occurred

The last coding-related error and its textual description can be retrieved anytime. Before using a
coding function, it is advisable to clear the "last error". This can be achieved by the following
method:

static void clear_error();

After using some coding functions, it can be checked if an error occurred with this function:

39

static error_type get_last_error_type();

This returns the last error, or ET_NONE if there was no error. The string representation of the error
can be requested with the help of this:

static String get_error_str();

WARNING The above two functions do not clear the "last error" flag.

11.1.2. TTCN_Buffer

TTCN Buffer objects are used to store encoded values and to communicate with the coding
functions. If encoding a value, the result will be put in a buffer, from which can be get. In the other
hand, to decode a value, the encoded octet string must be put in a TTCN_Buffer object, and the
decoding functions get their input from that.

void clear();

Resets the buffer, cleaning up its content, setting the pointers to the beginning of buffer.

void rewind();

Rewinds the buffer, that is, sets its reading pointer to the beginning of the buffer.

int get_pos();

Returns the (reading) position of the buffer.

void set_pos(final int new_pos);

Sets the (reading) position to pos, or to the end of buffer, if pos > get_len() .

int get_len();

Returns the amount of bytes in the buffer.

char[] get_data();

Returns a copy of the buffer starting from its start. You can read out count bytes beginning from this
address, where count is the value returned by the get_len() member function.

40

int get_read_len();

Returns how many bytes are in the buffer to read.

char[] get_read_data();

Returns a copy of the buffer starting from the read position of data. count bytes can be read out
beginning from this address, where count is the value returned by the get_read_len() member
function.

void put_c(final char c);

Appends the byte c to the end of buffer.

void put_s(final char[] cstr);

Writes a string of bytes to the end of buffer.

void put_os(final TitanOctetString p_os);

Appends the content of the octet string to the buffer.

void increase_length(final int size_incr);

Increases the size of the buffer.

void cut();

Cuts (removes) the bytes between the beginning of the buffer and the read position. After calling
this, the read position will be the beginning of buffer. As this function manipulates the internal
data, pointers referencing to data inside the buffer will be invalid.

void cut_end();

Cuts (removes) the bytes between the read position and the end of the buffer. After calling this, the
read position remains unchanged (that is, it will point to the end of the truncated buffer). As this
function manipulates the internal data, pointers referencing to data inside the buffer will be
invalid.

41

11.1.3. Invoking the Coding Functions

Every type class has members like these:

public void encode(final TTCN_Typedescriptor p_td, final TTCN_Buffer p_buf,
Ê final coding_type p_coding, final int flavour);
public void decode(final TTCN_Typedescriptor p_td,
Ê final TTCN_Buffer p_buf, final coding_type p_coding, final int flavour);

Parameter p_td is a special type descriptor. Each type has its own descriptor, which contains the
name of the type, and a lot of information used by the different encoding mechanisms. The names
of the descriptors come from the name of the types: the appropriate type descriptor for type XXX is
XXX_descr_.

Parameter p_buf contains the encoded value. For details about using it, please consult the previous
subsection.

Parameter p_coding is the desired coding mechanism. As coding_type is defined in TTCN_EncDec, its
value must be prefixed with TTCN_EncDec.. For the time being, this parameter may have one of the
following values [8: BER, TEXT and XER coding is not yet supported] :

¥ CT_RAW RAW - coding;

The flavour parameter is depending on the chosen coding.

11.2. BER
BER encoding and decoding is not yet supported on the Java side.

11.3. RAW
You can use the encoding rules defined in the section "RAW encoder and decoder" in the
ProgrammerÕs Technical Reference to encode and decode the following TTCNÐ3 types:

¥ boolean

¥ integer

¥ float

¥ bitstring

¥ octetstring

¥ charstring

¥ hexstring

¥ enumerated

¥ record

¥ set

42

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

¥ union

¥ record of

¥ set of

The compiler will produce code capable of RAW encoding/decoding for compound types if they
have at least one variant attribute.
When a compound type is only used internally or it is never RAW encoded/decoded then the
attribute variant has to be omitted.
When a type can be RAW encoded/decoded but with default specification then the empty variant
specification can be used: variant "" .

11.3.1. Error Situations

Table 5. RAW-coding errors

ET_LEN_ERR During encoding: Not enough length specified in FIELDLENGTH to
encode the value. During decoding: the received message is shorter
than expected.

ET_SIGN_ERR Unsigned encoding of a negative number.

ET_FLOAT_NAN Not a Number float value has been received.

ET_FLOAT_TR The float value will be truncated during double to single precision
conversion.

11.3.2. API

The Java Application Programming Interface for RAW encoding and decoding is described in the
following. It can be used for example in test port implementation, in external function
implementation.

Encoding

public void encode(final TTCN_Typedescriptor p_td, final TTCN_Buffer p_buf,
Ê final coding_type p_coding, final int flavour);

The parameter p_coding must be set to TTCN_EncDec.CT_RAW.

Decoding

public void decode(final TTCN_Typedescriptor p_td,
Ê final TTCN_Buffer p_buf, final coding_type p_coding, final int flavour);

The parameter p_coding must be set to TTCN_EncDec.CT_RAW.

11.3.3. Example

Let us assume that we have a TTCNÐ3 module which contains a type named ProtocolPdu, and this

43

module contains also two ports:

type port MyPort1 message
{
Ê out ProtocolPdu;
Ê in octetstring;
}

type port MyPort2 message
{
Ê out octetstring;
Ê in ProtocolPdu;
}

Then we can complete the port skeleton generated by the compiler as follows:

protected void outgoing_send(final ProtocolPdu send_par) {
Ê final TTCN_Buffer buffer = new TTCN_Buffer();
Ê send_par.encode(Bug.ProtocolPdu_descr_, buffer, TTCN_EncDec.coding_type.CT_RAW,
0);
Ê final TitanOctetString encodedData = new TitanOctetString();
Ê buffer.get_string(encodedData);
Ê incoming_message(encodedData);
}

protected void outgoing_send(final TitanOctetString send_par) {
Ê TTCN_EncDec.set_error_behavior(TTCN_EncDec.error_type.ET_ALL,
TTCN_EncDec.error_behavior_type.EB_WARNING);
Ê final TTCN_Buffer buffer = new TTCN_Buffer();
Ê buffer.put_os(send_par);
Ê final ProtocolPdu pdu = new ProtocolPdu();
Ê pdu.decode(Bug.ProtocolPdu_descr_, buffer, TTCN_EncDec.coding_type.CT_RAW, 0);
Ê incoming_message(pdu);
Ê }

11.4. TEXT
TEXT encoding and decoding is not yet supported on the Java side.

11.5. XML Encoding (XER)
XML encoding and decoding is not yet supported on the Java side.

11.6. JSON
JSON encoding and decoding is not yet supported on the Java side.

44

Chapter 12. Mapping TTCNÐ3 Data Types to
Java Constructs
On the Java side the TTCNÐ3 language elements of the test suite are individually mapped into more
or less equivalent Java constructs. The data types are mapped to Java classes, the test cases become
Java functions, and so on. In order to write a Test Port, it is inevitable to be familiar with the
internal representation format of TTCNÐ3 data types and values. This section gives an overview
about the data types and their equivalent Java constructs.

12.1. Mapping of Names and Identifiers
In order to identify the TTCNÐ3 language elements in the generated Java program properly, the
names of test suite are translated to Java identifiers according to the following simple rules.

If the TTCNÐ3 identifier does not contain any underscore (_) character, its equivalent Java identifier
will be the same. For example, the TTCNÐ3 variable MyVar will be translated to a Java variable called
MyVar.

If the TTCNÐ3 identifier contains one or more underscore characters, each underscore character
will be duplicated in the Java identifier. So the TTCNÐ3 identifier My_Long_Name will be mapped to a
Java identifier called My__Long__Name.

The idea behind this name mapping is that we may freely use the Java identifiers containing one
underscore character in the generated code and in the Test Ports as well. Otherwise name clashes
might happen (and to keep in line with the C++ side of the toolset and its already existing large
amount of code). Furthermore, the generated Java language elements fulfill the condition that the
scope of a translated Java identifier is identical as the scope of the original TTCNÐ3 identifier.

The identifiers that are keywords of Java but not keywords in TTCNÐ3 are mapped to themselves,
but a single underscore character is appended at the end (for example for becomes for_). The same
rule applies to the all-uppercase identifiers that are used in the Base Library: identifier
TitanInteger in TTCNÐ3 becomes TitanInteger_ in Java, TRUE [9: The built-in verdict and boolean
constants in TTCNÐ3 shall be written with all lowercase letters, such as true or pass. Although
previous compiler versions have accepted TRUE or PASS as well, these words are treated by the
compiler as regular identifiers as specified in the standard.] is mapped to TRUE_, etc.

FIXME update list of words Here is the complete list (in alphabetical order) of the identifiers that
are handled in such special way:asm, auto, bitand, bitor, bool, break, case, class, compl, continue,
delete, double, enum, explicit, export, friend, inline, int, ischosen, long, main, mutable, namespace,
new, operator, private, protected, public, register, short, signed, static, stderr, stdin, stdout, struct,
switch, this, throw, try, typedef, typeid, typename, unsigned, using, virtual, void, volatile, ADDRESS,
BITSTRING, BOOLEAN, CHAR, CHARSTRING, COMPONENT, DEFAULT, ERROR, FAIL, FALSE, FLOAT,
HEXSTRING, INCONC, INTEGER, NONE, OBJID, OCTETSTRING, PASS, PORT, TIMER, TRUE,
VERDICTTYPE.

The identifiers that are the names of common classes of the Java library (such as System, Map,)
should be avoided in TTCNÐ3 modules. The name clashes clashes might create problems during the

45

implementation of external functions and testports.

Note that these name mapping rules apply to all TTCNÐ3 identifiers, including module, Test Port,
type, field, variable and function names.

12.2. Modules
The Java code generator generates a Java class for every TTCNÐ3 and ASN.1 module. All Java
definitions that belong to the module (including Test Port classes and external functions) are placed
in that class. The name of the class is derived from the module identifier according to the rules
described in Mapping of Names and Identifiers .

When accessing a Java entity that belongs to a different module than the referring Test Port or
external function is in the reference has to be prefixed with the class of the referenced module and
the class of the referenced module being imported. For example, to access the Java class that
realizes type MyType defined in MyModule1 from a Test Port that belongs to module MyModule2 the
reference shall be written as MyModule1.MyType.

12.3. Predefined TTCNÐ3 Data Types
in the TTCNÐ3 Base Library all basic data types of TTCNÐ3 were implemented as Java classes. This is
because: * The TTCNÐ3 executor must know whether a variable has a valid value or not because
sending an unbound value must result in a dynamic test case error. * Complex types (like a record
or set) have no equivalents in Java. * Encoding and decoding of types in not present in Java types. *
etc.

This section describes the member functions of these classes.

WARNING
The toString of the built in and generated types is not considered part of the
public API for Test Port development. Its implementation might be subject to
change without notice. Please do not use it.

12.3.1. Integer

The TTCNÐ3 type integer is implemented in class TitanInteger .
The class TitanInteger has the following public member functions:

Table 8. Public member functions of the class TitanInteger

Member functions Notes

46

Constructors

TitanInteger() Initializes to
unbound value.

TitanInteger(final int otherValue) Initializes to a
given value.

TitanInteger(final BigInteger otherValue) Initializes to a
given value.

TitanInteger(final TitanInteger otherValue) Copy constructor.

TitanInteger(final String otherValue) Initializes with the
String
representation of
an integer.

Assignment
operators

TitanInteger operator_assign(final int otherValue) Sets to given
value.

TitanInteger operator_assign(final BigInteger
otherValue)

Sets to given
value.

TitanInteger operator_assign(final TitanInteger
otherValue)

Sets to given
value.

TitanInteger operator_assign(final Base_Type otherValue) Sets to given
value.

Comparison
operators

boolean operator_equals(final int otherValue) Returns true if
equals.

boolean operator_equals(final BigInteger otherValue) and false
otherwise.

boolean operator_equals(final TitanInteger otherValue)

boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final int otherValue)

boolean operator_not_equals(final BigInteger otherValue)

boolean operator_not_equals(final TitanInteger
otherValue)

47

Comparison
operators

boolean is_less_than(final int otherValue)

boolean is_less_than(final BigInteger otherValue)

boolean is_less_than(final TitanInteger otherValue)

boolean is_less_than_or_equal(final int otherValue)

boolean is_less_than_or_equal(final BigInteger otherValue)

boolean is_less_than_or_equal(final TitanInteger
otherValue)

boolean is_greater_than(final int otherValue)

boolean is_greater_than(final BigInteger otherValue)

boolean is_greater_than(final TitanInteger otherValue)

boolean is_greater_than_or_equal(final int otherValue)

boolean is_greater_than_or_equal(final BigInteger
otherValue)

boolean is_greater_than_or_equal(final TitanInteger
otherValue)

Arithmetic
operators

TitanInteger add() Unary plus.

TitanInteger sub() Unary minus.

TitanInteger add(final int other_value) Addition.

TitanInteger add(final BigInteger other_value)

TitanInteger add(final TitanInteger other_value)

TitanInteger sub(final int other_value) Subtraction.

TitanInteger sub(final BigInteger other_value)

TitanInteger sub(final TitanInteger other_value)

TitanInteger mul(final int other_value) Multiplication.

TitanInteger mul(final BigInteger other_value)

TitanInteger mul(final TitanInteger other_value)

TitanInteger div(final int other_value) Integer division.

TitanInteger div(final BigInteger other_value)

TitanInteger div(final TitanInteger other_value)

TitanInteger rem(final int other_value) remainder of the
division.

TitanInteger rem(final BigInteger other_value)

TitanInteger rem(final TitanInteger other_value)

TitanInteger mod(final int other_value) modulo of the
division.

TitanInteger mod(final BigInteger other_value)

TitanInteger mod(final TitanInteger other_value)

48

Casting operator

int get_int() Returns the value.

long get_long() Returns the value.

BigInteger get_BigInteger() Returns the value.

Other member
functions

boolean is_native() is the value native
int.

boolean is_bound() Returns whether
the value is bound.

boolean is_present() Returns whether
the value is
present.

boolean is_value() Returns whether
the value is a
value.

void log() Puts the value into
log.

void clean_up() Deletes the value,
setting it to
unbound.

void encode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

encodes the value.

void decode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

decodes the value.

The comparison, arithmetic and shifting operators are also available as global functions for that
case when the left side is int and the right side is TitanInteger . Using the value of an unbound
variable for anything will cause dynamic test case error.

The get_int() is applicable only to TitanInteger objects holding a signed value with at most 31
useful bits, since in Java the native int type is 32-bit large including the sign bit. Being used on an
TitanInteger object holding a bigger (for example a 32-bit unsigned) value will result in run-time
error.

Please note that if the value stored in a TitanInteger object is too big (that is, it cannot be
represented as a int) the value returned by get_long() will contain only the lowest 64 bits of the
original value.

In addition, the following static functions are available for modulo division. These functions return
the result of mod and rem operations according to TTCNÐ3 semantics.

49

TitanInteger mod(final TitanInteger left_value, final TitanInteger right_value);
TitanInteger mod(final TitanInteger left_value, final int right_value);
TitanInteger mod(final int left_value, final TitanInteger right_value);
TitanInteger mod(final int left_value, int right_value);

TitanInteger rem(final TitanInteger left_value, final TitanInteger right_value);
TitanInteger rem(final TitanInteger left_value, final int right_value);
TitanInteger rem(final int left_value, final TitanInteger right_value);
TitanInteger rem(final int left_value, final int right_value);

Other operators (static functions):

TitanInteger add(final int int_value, final TitanInteger other_value); // Add
TitanInteger sub(final int int_value, final TitanInteger other_value); // Subtract
TitanInteger mul(final int int_value, final TitanInteger other_value); // Multiply
TitanInteger div(final int int_value, final TitanInteger other_value); // Divide
boolean operator_equals(final int intValue, final TitanInteger otherValue); // Equal
boolean operator_not_equals(final int intValue, final TitanInteger otherValue); // Not
equal
boolean is_less_than(final int intValue, final TitanInteger otherValue); // Less than
boolean is_greater_than(final int intValue, final TitanInteger otherValue); // More
than

12.3.2. Float

The TTCNÐ3 type float is implemented in class TitanFloat .
The class TitanFloat has the following public member functions:

Table 9. Public member functions of the class TitanFloat

Member functions Notes

Constructors

TitanFloat() Initializes to
unbound value.

TitanFloat(final double otherValue) Initializes to a
given value.

TitanFloat(final Ttcn3Float otherValue)

TitanFloat(final TitanFloat otherValue) Copy constructor.

Assignment
operators

TitanFloat operator_assign(final double otherValue) Assigns the given
value

TitanFloat operator_assign(final Ttcn3Float otherValue) and sets the bound
flag.

TitanFloat operator_assign(final TitanFloat otherValue)

TitanFloat operator_assign(final Base_Type otherValue)

50

Comparison
operators

boolean operator_equals(final double otherValue) Returns true if
equals

boolean operator_equals(final Ttcn3Float otherValue) and false
otherwise.

boolean operator_equals(final TitanFloat otherValue)

boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final double otherValue)

boolean operator_not_equals(final Ttcn3Float otherValue)

boolean operator_not_equals(final TitanFloat otherValue)

boolean is_less_than(final double otherValue)

boolean is_less_than(final Ttcn3Float otherValue)

boolean is_less_than(final TitanFloat otherValue)

boolean is_less_than_or_equal(final double otherValue)

boolean is_less_than_or_equal(final Ttcn3Float otherValue)

boolean is_less_than_or_equal(final TitanFloat otherValue)

boolean is_greater_than(final double otherValue)

boolean is_greater_than(final Ttcn3Float otherValue)

boolean is_greater_than(final TitanFloat otherValue)

boolean is_greater_than_or_equal(final double otherValue)

boolean is_greater_than_or_equal(final Ttcn3Float
otherValue)

boolean is_greater_than_or_equal(final TitanFloat
otherValue)

Arithmetic
operators

TitanFloat add() Unary plus.

TitanFloat sub() Unary minus.

TitanFloat add(final double other_value) Addition.

TitanFloat add(final Ttcn3Float other_value)

TitanFloat add(final TitanFloat other_value)

TitanFloat sub(final double other_value) Subtraction.

TitanFloat sub(final Ttcn3Float other_value)

TitanFloat sub(final TitanFloat other_value)

TitanFloat mul(final double other_value) Multiplication.

TitanFloat mul(final Ttcn3Float other_value)

TitanFloat mul(final TitanFloat other_value)

TitanFloat div(final double other_value) Division.

TitanFloat div(final Ttcn3Float other_value)

TitanFloat div(final TitanFloat other_value)

Casting operator Double get_value() Returns the value.

51

Other member
functions

boolean is_native() is the value native
int.

boolean is_bound() Returns whether
the value is bound.

boolean is_present() Returns whether
the value is
present.

boolean is_value() Returns whether
the value is a
value.

void log() Puts the value into
log.

void clean_up() Deletes the value,
setting it to
unbound.

void encode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

encodes the value.

void decode(final TTCN_Typedescriptor p_td, final
TTCN_Buffer p_buf, final coding_type p_coding, final int
flavour)

decodes the value.

The comparison and arithmetic operators are also available as static functions for that case when
the left side is double and the right side is TitanFloat . Using the value of an unbound variable for
anything will cause dynamic test case error.

Other operators (static functions):

TitanFloat add(final double double_value, final TitanFloat other_value); // Add
TitanFloat sub(final double double_value, final TitanFloat other_value); //
Subtract
TitanFloat mul(final double double_value, final TitanFloat other_value); //
Multiply
TitanFloat div(final double double_value, final TitanFloat other_value); // Divide
boolean operator_equals(final double doubleValue, final TitanFloat otherValue); //
Equal
boolean operator_not_equals(final double doubleValue, final TitanFloat otherValue); //
Not equal
boolean is_less_than(final double doubleValue, final TitanFloat otherValue); // Less
than
boolean is_greater_than(final double doubleValue, final TitanFloat otherValue); //
More than

12.3.3. Boolean

The TTCNÐ3 type boolean is implemented in class TitanBoolean .
The class TitanBoolean has the following public member functions:

52

Table 10. Public member functions of the class TitanBoolean

Member functions Notes

Constructors

TitanBoolean() Initializes to
unbound
value.

TitanBoolean(final Boolean otherValue) Initializes to a
given value.

TitanBoolean(final TitanBoolean otherValue) Copy
constructor.

Assignment
operators

TitanBoolean operator_assign(final boolean otherValue) Assigns the
given value

TitanBoolean operator_assign(final TitanBoolean otherValue) and sets the
bound flag.

TitanBoolean operator_assign(final Base_Type otherValue)

Comparison
operators

boolean operator_equals(final boolean otherValue) Returns true if
equals

boolean operator_equals(final TitanBoolean otherValue) and false
otherwise.

boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final boolean otherValue) Same as XOR.

boolean operator_not_equals(final TitanBoolean otherValue)

Logical
operators

boolean not() Negation
(NOT).

boolean and(final boolean other_value) Logical AND.

boolean and(final TitanBoolean other_value)

boolean or(final boolean other_value) Logical OR.

boolean or(final TitanBoolean other_value)

boolean xor(final boolean other_value) Exclusive or
(XOR).

boolean xor(final TitanBoolean other_value)

Casting
operator

Boolean get_value() Returns the
value.

53

Other member
functions

boolean is_bound() Returns
whether the
value is bound.

boolean is_present() Returns
whether the
value is
present.

boolean is_value() Returns
whether the
value is a
value.

void log() Puts the value
into log. Like
"true" or
"false".

void clean_up() Deletes the
value, setting it
to unbound.

void encode(final TTCN_Typedescriptor p_td, final TTCN_Buffer
p_buf, final coding_type p_coding, final int flavour)

encodes the
value.

void decode(final TTCN_Typedescriptor p_td, final TTCN_Buffer
p_buf, final coding_type p_coding, final int flavour)

decodes the
value.

The comparison and logical operators are also available as static functions for that case when the
left side is boolean and the right side is TitanBoolean . Using the value of an unbound variable for
anything will cause dynamic test case error.

Other operators (static functions):

boolean and(final boolean bool_value, final TitanBoolean other_value); // And
boolean xor(final boolean bool_value, final TitanBoolean other_value); // Xor
boolean or(final boolean bool_value, final TitanBoolean other_value); // Or
boolean operator_equals(final boolean boolValue, final TitanBoolean otherValue); //
Equal
boolean operator_not_equals(final boolean boolValue, final TitanBoolean otherValue);//
Not equal

12.3.4. Verdicttype

The TTCNÐ3 type verdicttype is implemented in class TitanVerdictType .
The class TitanVerdictType has the following public member functions:

Table 11. Public member functions of the class TitanVerdictType

Member functions Notes

54

Constructors

TitanVerdictType() Initializes to
unbound
value.

TitanVerdictType(final VerdictTypeEnum otherValue) Initializes to a
given value.

TitanVerdictType(final TitanVerdictType otherValue) Copy
constructor.

Assignment
operators

TitanVerdictType operator_assign(final VerdictTypeEnum
otherValue)

Assigns the
given value

TitanVerdictType operator_assign(final TitanVerdictType
otherValue)

and sets the
bound flag.

TitanVerdictType operator_assign(final Base_Type otherValue)

Comparison
operators

boolean operator_equals(final VerdictTypeEnum otherValue) Returns true if
equals

boolean operator_equals(final TitanVerdictType otherValue) and false
otherwise.

boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final VerdictTypeEnum otherValue)

boolean operator_not_equals(final TitanVerdictType otherValue)

Casting
operator

VerdictTypeEnum get_value() Returns the
value.

Other member
functions

boolean is_bound() Returns
whether the
value is bound.

boolean is_present() Returns
whether the
value is
present.

boolean is_value() Returns
whether the
value is a
value.

void log() Puts the value
into log. Like
"pass" or "fail".

void clean_up() Deletes the
value, setting it
to unbound.

void encode(final TTCN_Typedescriptor p_td, final TTCN_Buffer
p_buf, final coding_type p_coding, final int flavour)

encodes the
value.

void decode(final TTCN_Typedescriptor p_td, final TTCN_Buffer
p_buf, final coding_type p_coding, final int flavour)

decodes the
value.

The comparison operators are also available as static functions for that case when the left side is
VerdictTypeEnum and the right side is TitanVerdictType . Using the value of an unbound

55

TitanVerdictType variable for anything will cause dynamic test case error.

Other operators (static functions):

boolean operator_equals(final VerdictTypeEnum par_value, final TitanVerdictType
other_value); // Equal
boolean operator_not_equals(final VerdictTypeEnum par_value, final TitanVerdictType
other_value); // Not equal

There are the following three static member functions in class TTCN_Runtime defined in the Base
Library for getting or modifying the local verdict of the current test components:

void setverdict(final TitanVerdictType.VerdictTypeEnum newValue);
void setverdict(final TitanVerdictType newValue);
void setverdict(final TitanVerdictType.VerdictTypeEnum newValue, final String reason);
setverdict(final TitanVerdictType newValue, final String reason);
TitanVerdictType get_verdict();

These functions are the Java equivalents of TTCNÐ3 setverdict and getverdict operations. Use them
only if your Test Port or Java function encounters a low-level failure, but it can continue its normal
operation (that is, error recovery is not necessary).

12.3.5. Bitstring

The equivalent Java class of TTCNÐ3 type bitstring is called TitanBitString . The bits of the bit string
are stored in an array of ints. In order to reduce the wasted memory space the bits are packed
together, so each int contains eight bits. The first int contains the first eight bits of the bit string; the
second int contains the bits from the 9th up to the 16th, and so on. The first bit of the bit string is
the LSB of the first character; the second bit is the second least significant bit of the first character,
and so on. If the length of the bit string is not a multiple of eight, the unused bits of the last
character can contain any value. So the length of the bit string must be always given.

The class TitanBitString has the following public member functions:

Table 12. Public member functions of the class TitanBitString

Member functions Notes

Constructors

TitanBitString() Initializes to
unbound value.

TitanBitString(final int other_value[], final int
nof_bits)

Initializes from a
given length and
int array.

TitanBitString(final TitanBitString otherValue) Copy constructor.

TitanBitString(final TitanBitString_Element otherValue) Initializes from a
single bitstring
element.

56

Assignment
operators

TitanBitString operator_assign(final TitanBitString
otherValue)

Assigns the given
value and sets the
bound flag.

TitanBitString operator_assign(final
TitanBitString_Element otherValue)

Assigns the given
single bitstring
element.

TitanBitString operator_assign(final Base_Type
otherValue)

Comparison
operators

boolean operator_equals(final TitanBitString otherValue) Returns true if
equals

boolean operator_equals(final TitanBitString_Element
otherValue)

and false
otherwise.

boolean operator_equals(final Base_Type otherValue)

boolean operator_not_equals(final TitanBitString
otherValue)

boolean operator_not_equals(final TitanBitString_Element
otherValue)

Concatenation
operator

TitanBitString operator_concatenate(final TitanBitString
other_value)

Concatenates two
bitstrings.

TitanBitString operator_concatenate(final
TitanBitString_Element other_value)

Concatenates a
bitstring and a
bitstring element.

Index operator

TitanBitString_Element get_at(final int index_value) Gives access to the
given element.
Indexing begins
from zero. Index
overflow causes
dynamic test case
error.

TitanBitString_Element get_at(final TitanInteger
index_value)

TitanBitString_Element constGet_at(final int index_value) Gives read-only
access to the given
element.

TitanBitString_Element constGet_at(final TitanInteger
index_value)

57

