Table of Notation

Symbol	Explanation	Page
Atom(U)	set of atoms of the ideal U	84
Aut L	automorphism group of L	12
B_{n}	boolean lattice with n atoms	4
C_{n}	n-element chain	4
$\operatorname{con}(a, b)$	smallest congruence under which $a \equiv b$	15
con(c)	principal congruence for a color c	39
con (H)	smallest congruence collapsing H	16
$\operatorname{con}(\mathfrak{p})$	principal congruence for the prime interval \mathfrak{p}	37
Con L	congruence lattice of L	15, 48
$\mathrm{Con}_{\mathrm{J}} L$	order of join-irreducible congruences of L	37
$\mathrm{Con}_{\mathrm{M}} L$	order of meet-irreducible congruences of L	71
Cube K	cubic extension of K	71
D	class (variety) of distributive lattices	24
Diag	diagonal embedding of K into Cube K	71
Down P	order of down-sets of the (hemi)order P	4, 9, 232
ext: Con $K \rightarrow$ Con L	for $K \leq L$, extension map: $\Theta \mapsto \operatorname{con}_{L}(\Theta)$	41
fil (a)	filter generated by the element a	14
fil(H)	filter generated by the set H	4
$F_{\mathbf{D}}(3)$	free distributive lattice on three generators	26
$\mathrm{F}_{\mathbf{K}}(H)$	free lattice generated by H in a variety \mathbf{K}	26
$F_{\mathbf{M}}(3)$	free modular lattice on three generators	28
Frucht C	Frucht lattice of a graph C	178
$\operatorname{hom}_{\{\vee, 0\}}(X, Y)$	$\{\vee, 0\}$-homomorphism of X into Y	253

Symbol	Explanation	Page
id (a)	ideal generated by the element a	14
$\mathrm{id}(H)$	ideal generated by the set H	14
Id L	ideal lattice of L	14, 48
(Id)	condition to define ideals	14, 48
Isoform	class of isoform lattices	141
$\mathrm{J}(\mathrm{D})$	order of join-irreducible elements of D	19
$\mathrm{J}(\varphi)$	$\mathrm{J}(\varphi): \mathrm{J}(E) \rightarrow \mathrm{J}(D)$, the "inverse" of $\varphi: D \rightarrow E$	32
$\mathrm{J}(a)$	set of join-irreducible elements below a	19
$\operatorname{ker}(\varphi)$	congruence kernel of φ	16
L	class (variety) of all lattices	25
M	class (variety) of modular lattices	25
Max	maximal elements of an order	49
$\operatorname{mcr}(n)$	minimal congruence representation function	87
$\operatorname{mcr}(n, \mathbf{V})$	mer for a class \mathbf{V}	87
$\mathrm{M}(D)$	order of meet-irreducible elements of D	32
M_{3}	five-element modular nondistributive lattice	xvii, 11, 30
$M_{3}[L]$	order of boolean triples of L	58
$M_{3}[L, a]$	interval of $M_{3}[L]$	63
$M_{3}[L, a, b]$	interval of $M_{3}[L]$	65
$M_{3}[a, b]$	order of boolean triples of the interval $[a, b]$	58
$M_{3}[\Theta]$	reflection of Θ^{3} to $M_{3}[L]$	60
$M_{3}[\Theta, a]$	reflection of Θ^{3} to $M_{3}[L, a]$	64
$M_{3}[\Theta, a, b]$	reflection of Θ^{3} to $M_{3}[L, a, b]$	xvii, 67
N_{5}	five-element nonmodular lattice	xvii, 11, 30
$N_{5,5}$	seven-element nonmodular lattice	94
$N_{6}=N(p, q)$	six-element nonmodular lattice	xvii, 80
$N_{6}[L]$	2/3-boolean triple construction	198
$N(A, B)$	lattice construction	132
$O(f)$	Landau O notation	xxvi
Part A	partition lattice of A	7, 9
Pow X	power set lattice of X	4
Pow ${ }^{+} X$	order of nonempty subsets of X	219
Prime(L)	set of prime intervals of L	37
re: $\operatorname{Con} L \rightarrow$ Con K	reflection (restriction) map: $\Theta \mapsto \Theta\rceil$ (39
SecComp	class of sectionally complemented lattices	87
SemiMod	class of semimodular lattices	87
Simp K	simple extension of K	71
$\left(\mathrm{SP}_{\vee}\right)$	join-substitution property	14, 48
$\left(\mathrm{SP}_{\wedge}\right)$	meet-substitution property	xvii, 14, 48
$\operatorname{sub}(H)$	sublattice generated by H	13
S_{8}	eight-element semimodular lattice	106
T	class (variety) of trivial lattices	25
Uniform	class of uniform lattices	141

Symbol	Explanation	Page	
Relations and			
Congruences			
A^{2}	set of ordered pairs of A	3	
$\varrho, \tau, \pi, \ldots$	binary relations		
Θ, Ψ, \ldots	congruences		
ω	zero of Part A	7	
ι	unit of Part A	7	
$a \equiv b(\pi)$	a and b in the same block of π	7	
$a \varrho b$	a and b in relation ϱ	3	
$a \equiv b(\Theta)$	a and b in relation Θ	3	
a / π	block containing a	6, 14	
H / π	blocks represented by H	7	
$\alpha \circ \beta$	product of α and β	21	
$\alpha \stackrel{\mathrm{r}}{\circ} \beta$	reflexive product of α and β	30	
$\Theta]_{K}$	restriction of Θ to the sublattice K	14	
L / Θ	quotient lattice	16	
Φ / Θ	quotient congruence	16	
π_{i}	projection map: $L_{1} \times \cdots \times L_{n} \rightarrow L_{i}$	21	
$\Theta \times \Phi$	direct product of congruences	21	
Orders			
$\leq,<$	ordering	3	
$\geq,>$	ordering, inverse notation	3	
$K \leq L$	K a sublattice of L	13	
\leq_{Q}	ordering of P restricted to a subset Q	4	
$a \\| b$	a incomparable with b	3	
$a \prec b$	a is covered by b	5	
$b \succ a$	b covers a	5	
0	zero, least element of an order	4	
1	unit, largest element of an order	4	
$a \vee b$	join operation	9	
V H	least upper bound of H	3	
$a \wedge b$	meet operation	9	
$\wedge H$	greatest lower bound of H	4	
P^{d}	dual of the order (lattice) P	4, 10	
[a,b]	interval	13	
$\downarrow H$	down-set generated by H	4	
\downarrow a	down-set generated by $\{a\}$	4	
$P \cong Q$	order (lattice) P isomorphic to Q	4, 12	

Symbol	Explanation	Page
Constructions		5,20
$\times Q$	direct product of P and Q	6
$P+Q$	sum of P and Q	16
$P+Q$	glued sum of P and Q	248
$A[B]$	tensor extension of A by B	245
$A \otimes B$	tensor product of A and B	120

Perpectivities

$[a, b] \sim[c, d]$	$[a, b]$ perspective to $[c, d]$	32
$[a, b] \stackrel{\sim}{\sim}[c, d]$	$[a, b]$ up-perspective to $[c, d]$	33
$[a, b] \stackrel{d}{\sim}[c, d]$	$[a, b]$ down-perspective to $[c, d]$	33
$[a, b] \approx[c, d]$	$[a, b]$ projective to $[c, d]$	33
$[a, b] \nearrow[c, d]$	$[a, b]$ up congruence-perspective onto $[c, d]$	35
$[a, b] \searrow[c, d]$	$[a, b]$ down congruence-perspective onto $[c, d]$	35
$[a, b] \leftrightarrows[c, d]$	$[a, b]$ congruence-perspective onto $[c, d]$	35
$[a, b] \Rightarrow[c, d]$	$[a, b]$ congruence-projective onto $[c, d]$	36
$[a, b] \Leftrightarrow[c, d]$	$[a, b] \Rightarrow[c, d]$ and $[c, d] \Rightarrow[a, b]$	36

Prime intervals

```
p,qq,\ldots
con(\mathfrak{p})\quad\mathrm{ principal congruence generated by }\mathfrak{p}
p}=>\mathfrak{q}\quad\mathfrak{p}\mathrm{ is congruence-projective onto }\mathfrak{q
p}\Leftrightarrow\mathfrak{q}\quad\mathfrak{p}=>q\mathfrak{q}\mathrm{ and }\mathfrak{q}=>\mathfrak{p
Prime(L) set of prime intervals of L
```


Miscellaneous

\bar{x}	closure of x	10
\varnothing	empty set	4

Picture Gallery

xvii

