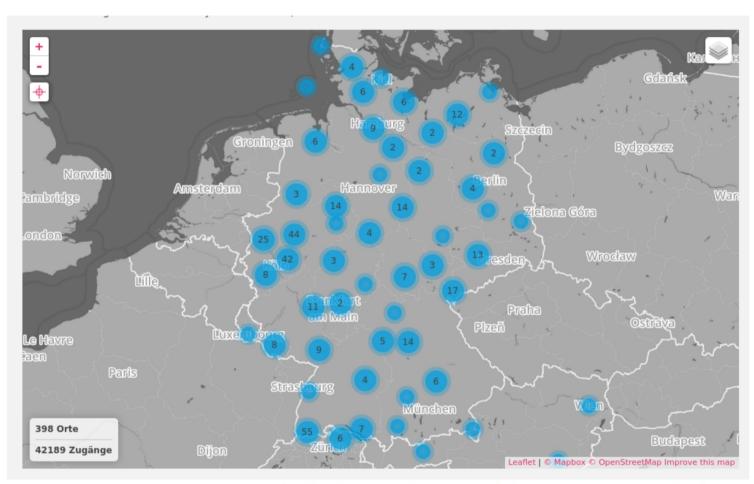


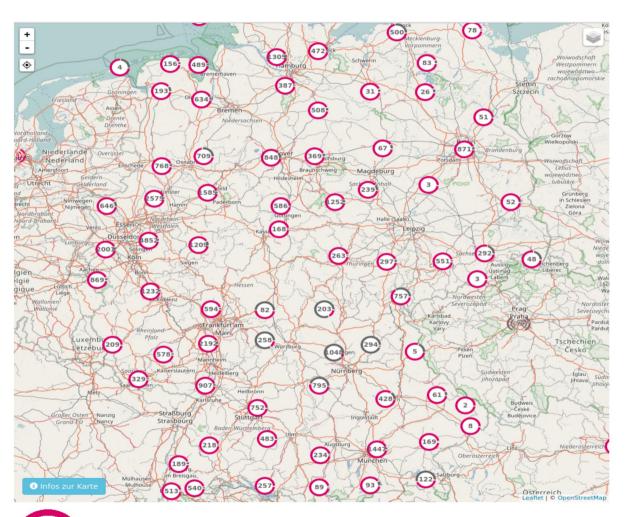
Freifunk

Heute


- Was ist das Freifunk?
- Wie gehts das?
- Exkurs: Mesh-Routing Protokolle
- Ziel: Gefühl bekommen wie das ganze technisch und theoretisch funktioniert.

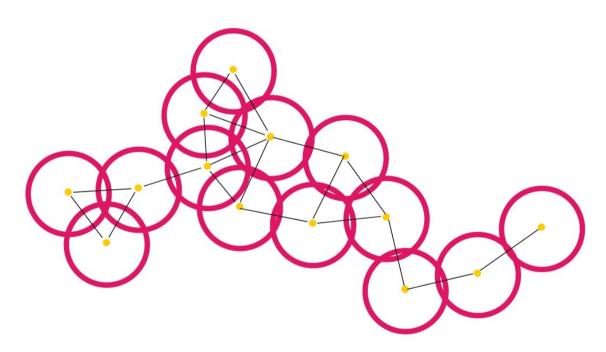
Was ist Freifunk?

- Seit 2003
- Dezentrale Intiative
- Nicht-Kommerziell
- Öffentliche Infrastruktur
- mit WLAN-Routern
- Sehr oft:
 - Meshrouting
 - Mit Internetzugang


Freifunk Communities

Quelle: https://freifunk.net/wie-mache-ich-mit/community-finden/

Freifunk-Router

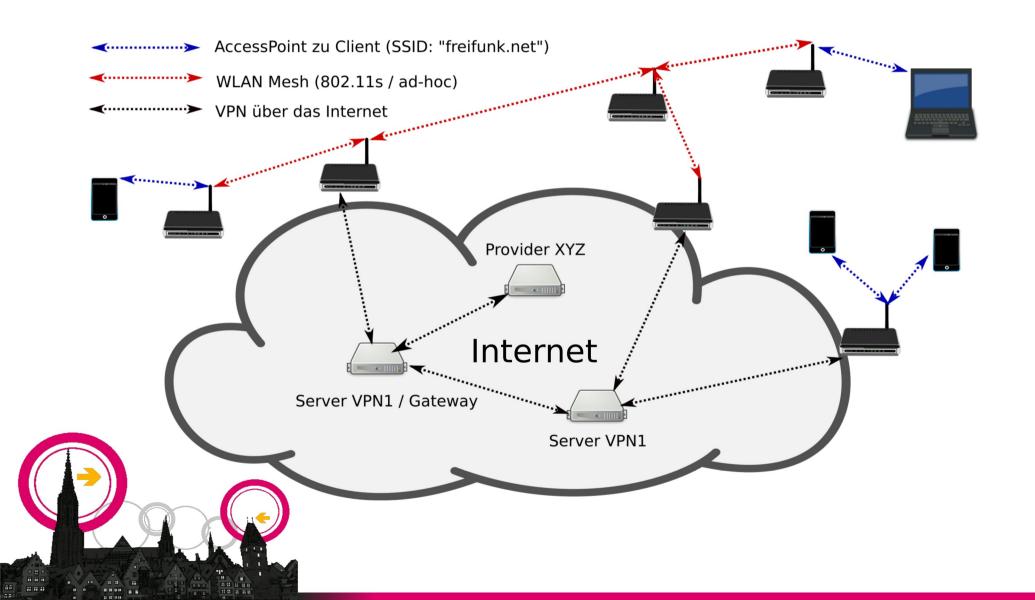

Quelle: https://www.freifunk-karte.de/

Hardware

- Hauptsächlich "Plaste"-Router
 - z.B. tp-wr841
 - 4MB Flash, 32MB RAM, 650 MHz Mips
 - 2.4GHz WLAN
 - 5GHz eher weniger verbreitet wegen Treiber / Kosten / Verbreitung
- Richtfunktrouter
 - z.B. Ubiquiti Nanostation
 - Einige Kilometer Reichweite
- Server sind "normale" Angebote
 - z.B. 2Ghz, 2GB RAM, 25GB HDD, primär viel Traffic

WLAN-Mesh

Die Grundldee:



Nicht ganz realistisch, weil:

- Runde Sendebereiche
- Keine geneseitige Überlappung

Netzwerkarchitektur

Netzstruktur

- Lokale und dezentrale Meshwolken
- Zentrale Backbonestruktur
 - Anders geht es z.Z. nicht
 - Wird eventuell mit IPv6 besser

Adressvergabe

- IPv4-DHCP auf den Gateways
- IPv6 Router Advertisment daemon
 - z.B. radvd, selbst geschrieben (gluon-radvd) oder Teil des Mesh-Routing-Software
 - Läuft oft auf jedem Router
 - Gleiches Suffix an Clients
 - z.B. fdef:17a0:ffb1:300::/64
- Fast überall Pv4/IPv6 im Parallelbetrieb

Konfiguration

- Teilweise sehr unterschiedlich
- Viele Communities experimentieren
- Hier nur ein Überblick der Komponenten und häufigen Konfiguration
- In der Realität komplexer
 - Effizienter und Leute wollen Spaß haben :>

Router-Software (1)

- Betriebssystem
 - LEDE / OpenWrt
- Routing-Protokoll
 - OLSR, batman-adv
- VPN Program
 - Fastd
 - L2TP
 - OpenVPN

Router Software (2)

- Konfigurations-Tool
 - uci zum bequemen ändern der Konfigurationsdateien in /etc/config
- Adressvergabe:
 - Radvd, gluon-radvd, dnsmasq
- Webserver:
 - uhttpd + LuCl

LEDE / OpenWrt

- Linux Distribution für WLAN-Router
- Firmware bauen:

git clone git://git.lede-project.org/source.git cd source

./scripts/feeds update -a ./scripts/feeds install -a

make defconfig make menuconfig

Live Demo!

Fertige images

- Falls die Hersteller-Software drauf ist:
 - bin/targets/ar71xx/generic/lede-ar71xxgeneric-tl-wr841-v9-squashfs-factory.bin
- Falls LEDE /OpenWrt bereits drauf ist:
 - bin/targets/ar71xx/generic/lede-ar71xx-generic-tl-wr841-v9-squashfs-sysupgrade.bin

Zugriff

- LEDE
 - ssh root@192.168.1.1
- OpenWrt
 - telnet 192.168.1.1
 - ssh über /etc/config/dropbear dauerhaft aktivieren
- Im Fehlerfall Reset-Taste im richtigen Moment drücken
 - LED blickt schnell
 - Sich 192.168.1.2/24 geben
 - Telnet 192.168.1.1

Router Konfigurieren

- /etc/config/firewall
 - Pakete blocken
- /etc/config/network
 - Netze und Adressen konfigurieren
- /etc/config/wireless
 - WLAN Anschlüsse (AP, Mesh)
 - SSID

Dateien ins Image

- Dateien für das RootFS unter files/ im build-Ordner, z.B.:
 - files/etc/config
 - files/www/
- Landen im gebauten Image
- Scripte zum einmaligen Ausführen:
 - /etc/config/uci-defaults/

Router Konfiguration

- Firewall
 - Oft werden alle Broadcasts und fast alle Multicast-Pakete geblockt.
 - Ansonsten hoher Datenverkehr
 - Geschwätzige Geräte im FF-Netz; z.B. Apple-Geräte
- WLAN:
 - Ein AccessPoint Interface (z.B. SSID "<stadtname>.freifunk.net")
 - Ein WLAN-Mesh Interface
 - 802.11s (mit eigenem Mesh-Protokoll) oder Ad-Hoc
- IP Adressen werden oft vom Router und Gateway vergeben.

FF-Firmwarelandschaft

- Gluon
 - Weit verbreitet
 - Framework zu Firmware bauen
- Meshkit
 - Leipzig, Augsburg, ...
 - Webseite zum selber bauen von images über Profile
- Andere:
 - Ulm ;-)
 - Berlin
 - Viele andere

FF - Server / Gateway

- Über Server Im Internet sind die Router miteinander verbunden
 - VPN-Server
 - Oft auch Mesh-Routing Software
- Gateway ist ein Server der Internetzugang bietet
 - Über Schweden VPN, anderweitiges Ausland
 - Über Provider in Deutschland
 - z.B. Freifunk Rheinland ;-)

Sonstige Software

- (Dezentrale) Kartenlösungen
 - Mit alfred + meshviewer (Link)
 - Server:
 - Alfred => Konverter => meshviewer
 - HTML+Javascript+3D.js
 - WLAN-Router:
 - Alfred
 - Andere ..
- Image Auwahl:
 - Gluon-Firmware-Wizard (Link)
- DNS
 - Oft mit Bind, <u>dem</u> DNS-Server

Meshrouting Allgemein

- Szenario
 - Knoten können willkürlich...
 - Sich bewegen
 - Aus- oder Angehen
 - Ändernde Verbindungsstärken
- Problemstellung:
 - Knoten A bekommt ein Paket das nach X möchte. Aber an welchen Nachbarn weiterreichen?

Meshrouting

- Viele Unterscheidungmöglichkeiten
 - Layer 2 / 3
 - Proaktiv / Reaktiv
 - Distance Vector Routing / Link State / ...
- Weitere Eigenschaften
 - Keine Routing-Loops
 - Konvergent
 - Alle Knoten haben die Gleichen Informationen
 - Nutzdaten vs. Grundrauschen
 - Routing-Metrik (Durchsatz, Paketloss, Hop-Count)

Grundrauschen

- Routing-Daten von einem Knoten werden an alle weitergeschickt.
 - "Hello"-Paket, OGM, Echolot
- Beim Mesh-Routing ist bisher oft bei
 - ~1000 Knoten Schluss
 - Wesentlich mehr Verwaltungstraffic als Nutzdaten...
 - ... Segmentierung

Layer 2 / 3

- Netzwerkebene die Simuliert wird
 - Layer 2
 - Es wird ein großer Netzwerkswitch simuliert
 - Ein Subnetz (z.B. 10.x.y.z)
 - Jeder Anschluss ein AccessPoint (freifunk.net)
 - Roaming geht aus dem Stand heraus
 - Layer 3
 - "Gebiete" werden in Subnetze unterteilt
 - Aber Subnetze müssen auch wieder verteilt werden
 - Für Roaming muss getrickst werden, geht aber auch

Proaktiv / Reaktiv

Proaktiv

- Alle nötigen Routinginformationen sammeln bevor ein Paket ankommt
- Schnelle Routingenscheidung
- Mehr Datenverkehr für Routing

Reaktiv

- Erst wenn ein Paket geroutet werden soll, werden die notwendigen Routinginformationen ermittelt
- Langsame Routingentscheidungen
- Wenig Datenverkehr

Protokoll-Kategorien

- Link State:
 - Knoten wissen die gesamte Topologie
 - Beispiel: OSPF, ISIS
- Distance Vector Routing:
 - Knoten wissen nur die Richtung
 - Beispiel: RIP, IGRP
- Szenarien:
 - Straßenkarte (jeder hat eine) ok, schlechtes Beispiel :>
 - Kleine-Welt-Phänomen (jeder kennt nur sein Nachbarn)

Mesh-Routing-Protokolle

- OLSR
 - Link State
 - Dijkstra-Algorithmus

freifunk_net

- Layer 3
- Proaktiv
- Batman-adv
 - Distance Vector
 - Layer 2
 - Proaktiv
- Babel
 - Distance Vector
 - Bellman-Ford Algorithmus
 - Layer 3
 - Proaktiv

Zukunft

- OpenWrt => LEDE
- Ad-hoc => 802.11s
- Bessere skalierende Routing-Protokolle
 - Experimente mit Babel...
- Dezentrales Backbone *wish*

Fragen - Danke

???

Links

- Freifunk: https://freifunk.net/
- LEDE: https://lede-project.org/
- Batman-adv: https://www.open-mesh.org/projects/batman-adv
- Babel: https://www.irif.fr/~jch/software/babel/
- OLSR: http://www.olsr.org
- Fastd: https://projects.universe-factory.net/projects/fastd/wiki
- Alfred: https://www.open-mesh.org/projects/alfred/wiki
- Meshviewer: https://github.com/ffnord/meshviewer
- Gluon-Firmware-Wizard:
 - https://github.com/freifunk-darmstadt/gluon-firmware-wizard